Abstract

Using Stokes-vectors formalism, we present a simple model describing steady and dynamic characteristics of all-fiber Raman lasers. This model allows us to describe experimental behaviors that are not yet understood in Raman lasers. In lasers made with standard fibers we show theoretically that weak birefringence and the optical Kerr effect lead to the emergence of unstable regimes similar to those recently observed in experiments [Opt. Lett. 28, 2464 (2003)]. However, the model shows that lasers made with polarization-maintaining fibers are always stable, as evidenced in experiments.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. AuYeung and A. Yariv, J. Opt. Soc. Am. 69, 803 (1979).
  2. A. Doutté, P. Suret, and S. Randoux, Opt. Lett. 28, 2464 (2003).
    [CrossRef]
  3. P. Suret and S. Randoux, Opt. Commun. 237, 201 (2004).
    [CrossRef]
  4. Q. Lin and G. P. Agrawal, Opt. Lett. 27, 2194 (2002).
    [CrossRef]
  5. Q. Lin and G. P. Agrawal, Opt. Lett. 28, 227 (2003).
    [CrossRef] [PubMed]
  6. Q. Lin and G. P. Agrawal, J. Opt. Soc. Am. B 20, 1616 (2003).
    [CrossRef]
  7. R. H. Stolen, IEEE J. Quantum Electron. QE-15, 1157 (1979).
    [CrossRef]
  8. A. Küng, L. Thévenaz, and P. A. Robert, J. Lightwave Technol. 15, 977 (1997).
    [CrossRef]

2004 (1)

P. Suret and S. Randoux, Opt. Commun. 237, 201 (2004).
[CrossRef]

2003 (3)

2002 (1)

1997 (1)

A. Küng, L. Thévenaz, and P. A. Robert, J. Lightwave Technol. 15, 977 (1997).
[CrossRef]

1979 (2)

R. H. Stolen, IEEE J. Quantum Electron. QE-15, 1157 (1979).
[CrossRef]

J. AuYeung and A. Yariv, J. Opt. Soc. Am. 69, 803 (1979).

Agrawal, G. P.

AuYeung, J.

Doutté, A.

Küng, A.

A. Küng, L. Thévenaz, and P. A. Robert, J. Lightwave Technol. 15, 977 (1997).
[CrossRef]

Lin, Q.

Randoux, S.

Robert, P. A.

A. Küng, L. Thévenaz, and P. A. Robert, J. Lightwave Technol. 15, 977 (1997).
[CrossRef]

Stolen, R. H.

R. H. Stolen, IEEE J. Quantum Electron. QE-15, 1157 (1979).
[CrossRef]

Suret, P.

Thévenaz, L.

A. Küng, L. Thévenaz, and P. A. Robert, J. Lightwave Technol. 15, 977 (1997).
[CrossRef]

Yariv, A.

IEEE J. Quantum Electron. (1)

R. H. Stolen, IEEE J. Quantum Electron. QE-15, 1157 (1979).
[CrossRef]

J. Lightwave Technol. (1)

A. Küng, L. Thévenaz, and P. A. Robert, J. Lightwave Technol. 15, 977 (1997).
[CrossRef]

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. B (1)

Opt. Commun. (1)

P. Suret and S. Randoux, Opt. Commun. 237, 201 (2004).
[CrossRef]

Opt. Lett. (3)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

(a), (b) Characteristics of the SF Raman laser numerically computed from L=1000 m, αp=0.45 dB/km, αs=0.8 dB/km, gR=6.2 dB/km W, λp=1100 nm, λs=1158 nm, δn=0, and γs=0.006 m-1 W-1. (c), (d) Self-oscillations of the Stokes output power at (c) Pin=0.84 W, (d) Pin=0.8 W.

Fig. 2
Fig. 2

(a), (b) Characteristics of the SF laser experimentally recorded in Ref. 2. The dotted curves are computed from the usual scalar model of Ref. 1. (c), (d) Characteristics numerically computed with same parameters as in Fig. 1, except (c) βs/2π=10-4 m-1, θp=0°, and γs=0.006 m-1 W-1, (d) βs/2π=0.0101 m-1, θp=40°, and γs=0 m-1 W-1.

Fig. 3
Fig. 3

PMF Raman laser: (a) Experimental (solid curve) and theoretical (squares) characteristics for θp=36°. (b) Experimental (crosses) and theoretical (curve) dependence of the power threshold on θp. The theoretical curve is computed with the same parameters as in Fig. 1, except βs/2π=5 m-1 and gR=6.8 dB/km W.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

Pz+ncPt=-αpP-λs2λpgRP0S+S0P+λsλpβs+γsWpNL×P,
Sz+ncSt=-αsS+12gRS0P+P0S+βS+γsWsNL×S,
Pz=0,t=Pin,
Sz=0,t=RSz=L,t.
Pthθp=21+cos2θpPth0°,

Metrics