Abstract

Thermo-optic distortions often limit the beam quality and power scaling of high-average-power lasers. Cryogenically cooled Yb:YAG is used to efficiently generate 165 W of near-diffraction-limited beam from a power oscillator with negligible thermo-optic effects. End pumped with 215 W of incident pump power from two diode modules, the laser has an optical–optical efficiency of 76%, a slope efficiency of 85%, and an M2 value of 1.02.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. Lacovara, H. K. Choi, C. A. Wang, R. L. Aggarwal, and T. Y. Fan, Opt. Lett. 16, 1089 (1991).
    [CrossRef] [PubMed]
  2. D. C. Brown, IEEE J. Quantum Electron. 33, 861 (1997).
    [CrossRef]
  3. T. Y. Fan, T. Crow, and B. Hoden, Proc. SPIE 3381, 200 (1998).
    [CrossRef]
  4. T. Kasamatsu, H. Sekita, and Y. Kuwano, Appl. Opt. 38, 5149 (1999).
    [CrossRef]
  5. P. H. Klein and W. J. Croft, J. Appl. Phys. 38, 1603 (1967).
    [CrossRef]
  6. G. A. Slack and D. W. Oliver, Phys. Rev. B 4, 592 (1971).
    [CrossRef]
  7. R. Wynne, J. L. Daneu, and T. Y. Fan, Appl. Opt. 38, 3282 (1999).
    [CrossRef]
  8. D. S. Sumida and T. Y. Fan, in Advanced Solid-State Lasers, T. Y. Fan and B. Chai, eds., Vol. 20 of OSA Proceedings Series (Optical Society of America, Washington, D.C., 1994), pp. 100–102.
  9. J. Dong, M. Bass, Y. Mao, P. Deng, and F. Gan, J. Opt. Soc. Am. B 20, 1975 (2003).
    [CrossRef]
  10. J. Kawanaka, K. Yamakawa, H. Nishioka, and K. Ueda, Opt. Express 10, 455 (2002), http://www.opticsexpress.org .
    [CrossRef] [PubMed]
  11. J. Kawanaka, K. Yamakawa, H. Nishioka, and K. Ueda, Opt. Lett. 28, 2121 (2003).
    [CrossRef] [PubMed]
  12. P. A. Schulz and S. R. Henion, IEEE J. Quantum Electron. 27, 1039 (1991).
    [CrossRef]
  13. S. Backus, R. Bartels, S. Thompson, R. Dollinger, H. C. Kapteyn, and M. M. Murnane, Opt. Lett. 26, 465 (2001).
    [CrossRef]

2003 (2)

2002 (1)

2001 (1)

1999 (2)

1998 (1)

T. Y. Fan, T. Crow, and B. Hoden, Proc. SPIE 3381, 200 (1998).
[CrossRef]

1997 (1)

D. C. Brown, IEEE J. Quantum Electron. 33, 861 (1997).
[CrossRef]

1991 (2)

1971 (1)

G. A. Slack and D. W. Oliver, Phys. Rev. B 4, 592 (1971).
[CrossRef]

1967 (1)

P. H. Klein and W. J. Croft, J. Appl. Phys. 38, 1603 (1967).
[CrossRef]

Aggarwal, R. L.

Backus, S.

Bartels, R.

Bass, M.

Brown, D. C.

D. C. Brown, IEEE J. Quantum Electron. 33, 861 (1997).
[CrossRef]

Choi, H. K.

Croft, W. J.

P. H. Klein and W. J. Croft, J. Appl. Phys. 38, 1603 (1967).
[CrossRef]

Crow, T.

T. Y. Fan, T. Crow, and B. Hoden, Proc. SPIE 3381, 200 (1998).
[CrossRef]

Daneu, J. L.

Deng, P.

Dollinger, R.

Dong, J.

Fan, T. Y.

R. Wynne, J. L. Daneu, and T. Y. Fan, Appl. Opt. 38, 3282 (1999).
[CrossRef]

T. Y. Fan, T. Crow, and B. Hoden, Proc. SPIE 3381, 200 (1998).
[CrossRef]

P. Lacovara, H. K. Choi, C. A. Wang, R. L. Aggarwal, and T. Y. Fan, Opt. Lett. 16, 1089 (1991).
[CrossRef] [PubMed]

D. S. Sumida and T. Y. Fan, in Advanced Solid-State Lasers, T. Y. Fan and B. Chai, eds., Vol. 20 of OSA Proceedings Series (Optical Society of America, Washington, D.C., 1994), pp. 100–102.

Gan, F.

Henion, S. R.

P. A. Schulz and S. R. Henion, IEEE J. Quantum Electron. 27, 1039 (1991).
[CrossRef]

Hoden, B.

T. Y. Fan, T. Crow, and B. Hoden, Proc. SPIE 3381, 200 (1998).
[CrossRef]

Kapteyn, H. C.

Kasamatsu, T.

Kawanaka, J.

Klein, P. H.

P. H. Klein and W. J. Croft, J. Appl. Phys. 38, 1603 (1967).
[CrossRef]

Kuwano, Y.

Lacovara, P.

Mao, Y.

Murnane, M. M.

Nishioka, H.

Oliver, D. W.

G. A. Slack and D. W. Oliver, Phys. Rev. B 4, 592 (1971).
[CrossRef]

Schulz, P. A.

P. A. Schulz and S. R. Henion, IEEE J. Quantum Electron. 27, 1039 (1991).
[CrossRef]

Sekita, H.

Slack, G. A.

G. A. Slack and D. W. Oliver, Phys. Rev. B 4, 592 (1971).
[CrossRef]

Sumida, D. S.

D. S. Sumida and T. Y. Fan, in Advanced Solid-State Lasers, T. Y. Fan and B. Chai, eds., Vol. 20 of OSA Proceedings Series (Optical Society of America, Washington, D.C., 1994), pp. 100–102.

Thompson, S.

Ueda, K.

Wang, C. A.

Wynne, R.

Yamakawa, K.

Appl. Opt. (2)

IEEE J. Quantum Electron. (2)

P. A. Schulz and S. R. Henion, IEEE J. Quantum Electron. 27, 1039 (1991).
[CrossRef]

D. C. Brown, IEEE J. Quantum Electron. 33, 861 (1997).
[CrossRef]

J. Appl. Phys. (1)

P. H. Klein and W. J. Croft, J. Appl. Phys. 38, 1603 (1967).
[CrossRef]

J. Opt. Soc. Am. B (1)

Opt. Express (1)

Opt. Lett. (3)

Phys. Rev. B (1)

G. A. Slack and D. W. Oliver, Phys. Rev. B 4, 592 (1971).
[CrossRef]

Proc. SPIE (1)

T. Y. Fan, T. Crow, and B. Hoden, Proc. SPIE 3381, 200 (1998).
[CrossRef]

Other (1)

D. S. Sumida and T. Y. Fan, in Advanced Solid-State Lasers, T. Y. Fan and B. Chai, eds., Vol. 20 of OSA Proceedings Series (Optical Society of America, Washington, D.C., 1994), pp. 100–102.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Schematic of diode end-pumped cryogenically cooled Yb:YAG laser. VRM, variable reflectivity mirror.

Fig. 2
Fig. 2

Output power and M2 value of the cryogenically cooled Yb:YAG laser as a function of incident diode pump power.

Fig. 3
Fig. 3

(a) Beam profile measured by a CCD camera of laser output at full power. (b) Horizontal slice through center of beam profile with Gaussian fit.

Metrics