Abstract

We present an omnidirectional matter waveguide on an atom chip. The guide is based on a combination of two current-carrying wires and a bias field pointing perpendicular to the chip surface. Thermal atoms are guided for more than two complete turns along a 25-mm-long spiral path (with curve radii as short as 200 µm) at various atom-surface distances (35450 µm). An extension of the scheme for the guiding of Bose–Einstein condensates is outlined.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. Folman, P. Krüger, J. Schmiedmayer, J. Denschlag, and C. Henkel, Adv. At. Mol. Opt. Phys. 48, 263 (2002).
    [CrossRef]
  2. J. Reichel, Appl. Phys. B 74, 469 (2002).
    [CrossRef]
  3. J. H. Thywissen, M. Olshanii, G. Zabow, M. Drndić, K. S. Johnson, R. M. Westervelt, and M. Prentiss, Eur. Phys. J. D 7, 361 (1999).
    [CrossRef]
  4. D. Müller, D. Z. Anderson, R. J. Grow, P. D. D. Schwindt, and E. A. Cornell, Phys. Rev. Lett. 83, 5194 (1999).
    [CrossRef]
  5. J. A. Sauer, M. D. Barrett, and M. S. Chapman, Phys. Rev. Lett. 87, 270401 (2001).
    [CrossRef]
  6. N. H. Dekker, C. S. Lee, V. Lorent, J. H. Thywissen, S. P. Smith, M. Drndić, R. M. Wastervelt, and M. Prentiss, Phys. Rev. Lett. 84, 1124 (2000).
    [CrossRef] [PubMed]
  7. J. Reichel, W. Hänsel, and T. W. Hänsch, Phys. Rev. Lett. 83, 3398 (1999).
    [CrossRef]
  8. R. Folman, P. Krüger, D. Cassettari, B. Hessmo, T. Maier, and J. Schmiedmayer, Phys. Rev. Lett. 84, 4749 (2000).
    [CrossRef] [PubMed]
  9. D. Cassettari, B. Hessmo, R. Folman, Th. Maier, and J. Schmiedmayer, Phys. Rev. Lett. 85, 5483 (2000).
    [CrossRef]
  10. The images are taken by exposing the atoms to a flash (100 µs) of near-resonant laser light. To avoid any disturbing reflections, the light enters the chamber from two directions parallel to the chip surface.
  11. The clouds exhibit an anisotropic temperature profile (450 µK in the transverse and 50 µK in the longitudinal directions) due to a transverse compression during the loading without rethermalization.
  12. By running a parallel current through another wire on the chip, we could even enhance this pushing effect.
  13. W. Petrich, M. H. Anderson, J. R. Ensher, and E. A. Cornell, Phys. Rev. Lett. 74, 3352 (1995).
    [CrossRef] [PubMed]
  14. E. Andersson, T. Calarco, R. Folman, M. Anderson, B. Hessmo, and J. Schmiedmayer, Phys. Rev. Lett. 88, 100401 (2002).
    [CrossRef]

2002 (3)

R. Folman, P. Krüger, J. Schmiedmayer, J. Denschlag, and C. Henkel, Adv. At. Mol. Opt. Phys. 48, 263 (2002).
[CrossRef]

J. Reichel, Appl. Phys. B 74, 469 (2002).
[CrossRef]

E. Andersson, T. Calarco, R. Folman, M. Anderson, B. Hessmo, and J. Schmiedmayer, Phys. Rev. Lett. 88, 100401 (2002).
[CrossRef]

2001 (1)

J. A. Sauer, M. D. Barrett, and M. S. Chapman, Phys. Rev. Lett. 87, 270401 (2001).
[CrossRef]

2000 (3)

N. H. Dekker, C. S. Lee, V. Lorent, J. H. Thywissen, S. P. Smith, M. Drndić, R. M. Wastervelt, and M. Prentiss, Phys. Rev. Lett. 84, 1124 (2000).
[CrossRef] [PubMed]

R. Folman, P. Krüger, D. Cassettari, B. Hessmo, T. Maier, and J. Schmiedmayer, Phys. Rev. Lett. 84, 4749 (2000).
[CrossRef] [PubMed]

D. Cassettari, B. Hessmo, R. Folman, Th. Maier, and J. Schmiedmayer, Phys. Rev. Lett. 85, 5483 (2000).
[CrossRef]

1999 (3)

J. Reichel, W. Hänsel, and T. W. Hänsch, Phys. Rev. Lett. 83, 3398 (1999).
[CrossRef]

J. H. Thywissen, M. Olshanii, G. Zabow, M. Drndić, K. S. Johnson, R. M. Westervelt, and M. Prentiss, Eur. Phys. J. D 7, 361 (1999).
[CrossRef]

D. Müller, D. Z. Anderson, R. J. Grow, P. D. D. Schwindt, and E. A. Cornell, Phys. Rev. Lett. 83, 5194 (1999).
[CrossRef]

1995 (1)

W. Petrich, M. H. Anderson, J. R. Ensher, and E. A. Cornell, Phys. Rev. Lett. 74, 3352 (1995).
[CrossRef] [PubMed]

Anderson, D. Z.

D. Müller, D. Z. Anderson, R. J. Grow, P. D. D. Schwindt, and E. A. Cornell, Phys. Rev. Lett. 83, 5194 (1999).
[CrossRef]

Anderson, M.

E. Andersson, T. Calarco, R. Folman, M. Anderson, B. Hessmo, and J. Schmiedmayer, Phys. Rev. Lett. 88, 100401 (2002).
[CrossRef]

Anderson, M. H.

W. Petrich, M. H. Anderson, J. R. Ensher, and E. A. Cornell, Phys. Rev. Lett. 74, 3352 (1995).
[CrossRef] [PubMed]

Andersson, E.

E. Andersson, T. Calarco, R. Folman, M. Anderson, B. Hessmo, and J. Schmiedmayer, Phys. Rev. Lett. 88, 100401 (2002).
[CrossRef]

Barrett, M. D.

J. A. Sauer, M. D. Barrett, and M. S. Chapman, Phys. Rev. Lett. 87, 270401 (2001).
[CrossRef]

Calarco, T.

E. Andersson, T. Calarco, R. Folman, M. Anderson, B. Hessmo, and J. Schmiedmayer, Phys. Rev. Lett. 88, 100401 (2002).
[CrossRef]

Cassettari, D.

D. Cassettari, B. Hessmo, R. Folman, Th. Maier, and J. Schmiedmayer, Phys. Rev. Lett. 85, 5483 (2000).
[CrossRef]

R. Folman, P. Krüger, D. Cassettari, B. Hessmo, T. Maier, and J. Schmiedmayer, Phys. Rev. Lett. 84, 4749 (2000).
[CrossRef] [PubMed]

Chapman, M. S.

J. A. Sauer, M. D. Barrett, and M. S. Chapman, Phys. Rev. Lett. 87, 270401 (2001).
[CrossRef]

Cornell, E. A.

D. Müller, D. Z. Anderson, R. J. Grow, P. D. D. Schwindt, and E. A. Cornell, Phys. Rev. Lett. 83, 5194 (1999).
[CrossRef]

W. Petrich, M. H. Anderson, J. R. Ensher, and E. A. Cornell, Phys. Rev. Lett. 74, 3352 (1995).
[CrossRef] [PubMed]

Dekker, N. H.

N. H. Dekker, C. S. Lee, V. Lorent, J. H. Thywissen, S. P. Smith, M. Drndić, R. M. Wastervelt, and M. Prentiss, Phys. Rev. Lett. 84, 1124 (2000).
[CrossRef] [PubMed]

Denschlag, J.

R. Folman, P. Krüger, J. Schmiedmayer, J. Denschlag, and C. Henkel, Adv. At. Mol. Opt. Phys. 48, 263 (2002).
[CrossRef]

Drndic, M.

N. H. Dekker, C. S. Lee, V. Lorent, J. H. Thywissen, S. P. Smith, M. Drndić, R. M. Wastervelt, and M. Prentiss, Phys. Rev. Lett. 84, 1124 (2000).
[CrossRef] [PubMed]

J. H. Thywissen, M. Olshanii, G. Zabow, M. Drndić, K. S. Johnson, R. M. Westervelt, and M. Prentiss, Eur. Phys. J. D 7, 361 (1999).
[CrossRef]

Ensher, J. R.

W. Petrich, M. H. Anderson, J. R. Ensher, and E. A. Cornell, Phys. Rev. Lett. 74, 3352 (1995).
[CrossRef] [PubMed]

Folman, R.

E. Andersson, T. Calarco, R. Folman, M. Anderson, B. Hessmo, and J. Schmiedmayer, Phys. Rev. Lett. 88, 100401 (2002).
[CrossRef]

R. Folman, P. Krüger, J. Schmiedmayer, J. Denschlag, and C. Henkel, Adv. At. Mol. Opt. Phys. 48, 263 (2002).
[CrossRef]

R. Folman, P. Krüger, D. Cassettari, B. Hessmo, T. Maier, and J. Schmiedmayer, Phys. Rev. Lett. 84, 4749 (2000).
[CrossRef] [PubMed]

D. Cassettari, B. Hessmo, R. Folman, Th. Maier, and J. Schmiedmayer, Phys. Rev. Lett. 85, 5483 (2000).
[CrossRef]

Grow, R. J.

D. Müller, D. Z. Anderson, R. J. Grow, P. D. D. Schwindt, and E. A. Cornell, Phys. Rev. Lett. 83, 5194 (1999).
[CrossRef]

Hänsch, T. W.

J. Reichel, W. Hänsel, and T. W. Hänsch, Phys. Rev. Lett. 83, 3398 (1999).
[CrossRef]

Hänsel, W.

J. Reichel, W. Hänsel, and T. W. Hänsch, Phys. Rev. Lett. 83, 3398 (1999).
[CrossRef]

Henkel, C.

R. Folman, P. Krüger, J. Schmiedmayer, J. Denschlag, and C. Henkel, Adv. At. Mol. Opt. Phys. 48, 263 (2002).
[CrossRef]

Hessmo, B.

E. Andersson, T. Calarco, R. Folman, M. Anderson, B. Hessmo, and J. Schmiedmayer, Phys. Rev. Lett. 88, 100401 (2002).
[CrossRef]

D. Cassettari, B. Hessmo, R. Folman, Th. Maier, and J. Schmiedmayer, Phys. Rev. Lett. 85, 5483 (2000).
[CrossRef]

R. Folman, P. Krüger, D. Cassettari, B. Hessmo, T. Maier, and J. Schmiedmayer, Phys. Rev. Lett. 84, 4749 (2000).
[CrossRef] [PubMed]

Johnson, K. S.

J. H. Thywissen, M. Olshanii, G. Zabow, M. Drndić, K. S. Johnson, R. M. Westervelt, and M. Prentiss, Eur. Phys. J. D 7, 361 (1999).
[CrossRef]

Krüger, P.

R. Folman, P. Krüger, J. Schmiedmayer, J. Denschlag, and C. Henkel, Adv. At. Mol. Opt. Phys. 48, 263 (2002).
[CrossRef]

R. Folman, P. Krüger, D. Cassettari, B. Hessmo, T. Maier, and J. Schmiedmayer, Phys. Rev. Lett. 84, 4749 (2000).
[CrossRef] [PubMed]

Lee, C. S.

N. H. Dekker, C. S. Lee, V. Lorent, J. H. Thywissen, S. P. Smith, M. Drndić, R. M. Wastervelt, and M. Prentiss, Phys. Rev. Lett. 84, 1124 (2000).
[CrossRef] [PubMed]

Lorent, V.

N. H. Dekker, C. S. Lee, V. Lorent, J. H. Thywissen, S. P. Smith, M. Drndić, R. M. Wastervelt, and M. Prentiss, Phys. Rev. Lett. 84, 1124 (2000).
[CrossRef] [PubMed]

Maier, T.

R. Folman, P. Krüger, D. Cassettari, B. Hessmo, T. Maier, and J. Schmiedmayer, Phys. Rev. Lett. 84, 4749 (2000).
[CrossRef] [PubMed]

Maier, Th.

D. Cassettari, B. Hessmo, R. Folman, Th. Maier, and J. Schmiedmayer, Phys. Rev. Lett. 85, 5483 (2000).
[CrossRef]

Müller, D.

D. Müller, D. Z. Anderson, R. J. Grow, P. D. D. Schwindt, and E. A. Cornell, Phys. Rev. Lett. 83, 5194 (1999).
[CrossRef]

Olshanii, M.

J. H. Thywissen, M. Olshanii, G. Zabow, M. Drndić, K. S. Johnson, R. M. Westervelt, and M. Prentiss, Eur. Phys. J. D 7, 361 (1999).
[CrossRef]

Petrich, W.

W. Petrich, M. H. Anderson, J. R. Ensher, and E. A. Cornell, Phys. Rev. Lett. 74, 3352 (1995).
[CrossRef] [PubMed]

Prentiss, M.

N. H. Dekker, C. S. Lee, V. Lorent, J. H. Thywissen, S. P. Smith, M. Drndić, R. M. Wastervelt, and M. Prentiss, Phys. Rev. Lett. 84, 1124 (2000).
[CrossRef] [PubMed]

J. H. Thywissen, M. Olshanii, G. Zabow, M. Drndić, K. S. Johnson, R. M. Westervelt, and M. Prentiss, Eur. Phys. J. D 7, 361 (1999).
[CrossRef]

Reichel, J.

J. Reichel, Appl. Phys. B 74, 469 (2002).
[CrossRef]

J. Reichel, W. Hänsel, and T. W. Hänsch, Phys. Rev. Lett. 83, 3398 (1999).
[CrossRef]

Sauer, J. A.

J. A. Sauer, M. D. Barrett, and M. S. Chapman, Phys. Rev. Lett. 87, 270401 (2001).
[CrossRef]

Schmiedmayer, J.

R. Folman, P. Krüger, J. Schmiedmayer, J. Denschlag, and C. Henkel, Adv. At. Mol. Opt. Phys. 48, 263 (2002).
[CrossRef]

E. Andersson, T. Calarco, R. Folman, M. Anderson, B. Hessmo, and J. Schmiedmayer, Phys. Rev. Lett. 88, 100401 (2002).
[CrossRef]

D. Cassettari, B. Hessmo, R. Folman, Th. Maier, and J. Schmiedmayer, Phys. Rev. Lett. 85, 5483 (2000).
[CrossRef]

R. Folman, P. Krüger, D. Cassettari, B. Hessmo, T. Maier, and J. Schmiedmayer, Phys. Rev. Lett. 84, 4749 (2000).
[CrossRef] [PubMed]

Schwindt, P. D. D.

D. Müller, D. Z. Anderson, R. J. Grow, P. D. D. Schwindt, and E. A. Cornell, Phys. Rev. Lett. 83, 5194 (1999).
[CrossRef]

Smith, S. P.

N. H. Dekker, C. S. Lee, V. Lorent, J. H. Thywissen, S. P. Smith, M. Drndić, R. M. Wastervelt, and M. Prentiss, Phys. Rev. Lett. 84, 1124 (2000).
[CrossRef] [PubMed]

Thywissen, J. H.

N. H. Dekker, C. S. Lee, V. Lorent, J. H. Thywissen, S. P. Smith, M. Drndić, R. M. Wastervelt, and M. Prentiss, Phys. Rev. Lett. 84, 1124 (2000).
[CrossRef] [PubMed]

J. H. Thywissen, M. Olshanii, G. Zabow, M. Drndić, K. S. Johnson, R. M. Westervelt, and M. Prentiss, Eur. Phys. J. D 7, 361 (1999).
[CrossRef]

Wastervelt, R. M.

N. H. Dekker, C. S. Lee, V. Lorent, J. H. Thywissen, S. P. Smith, M. Drndić, R. M. Wastervelt, and M. Prentiss, Phys. Rev. Lett. 84, 1124 (2000).
[CrossRef] [PubMed]

Westervelt, R. M.

J. H. Thywissen, M. Olshanii, G. Zabow, M. Drndić, K. S. Johnson, R. M. Westervelt, and M. Prentiss, Eur. Phys. J. D 7, 361 (1999).
[CrossRef]

Zabow, G.

J. H. Thywissen, M. Olshanii, G. Zabow, M. Drndić, K. S. Johnson, R. M. Westervelt, and M. Prentiss, Eur. Phys. J. D 7, 361 (1999).
[CrossRef]

Adv. At. Mol. Opt. Phys. (1)

R. Folman, P. Krüger, J. Schmiedmayer, J. Denschlag, and C. Henkel, Adv. At. Mol. Opt. Phys. 48, 263 (2002).
[CrossRef]

Appl. Phys. B (1)

J. Reichel, Appl. Phys. B 74, 469 (2002).
[CrossRef]

Eur. Phys. J. D (1)

J. H. Thywissen, M. Olshanii, G. Zabow, M. Drndić, K. S. Johnson, R. M. Westervelt, and M. Prentiss, Eur. Phys. J. D 7, 361 (1999).
[CrossRef]

Phys. Rev. Lett. (8)

D. Müller, D. Z. Anderson, R. J. Grow, P. D. D. Schwindt, and E. A. Cornell, Phys. Rev. Lett. 83, 5194 (1999).
[CrossRef]

J. A. Sauer, M. D. Barrett, and M. S. Chapman, Phys. Rev. Lett. 87, 270401 (2001).
[CrossRef]

N. H. Dekker, C. S. Lee, V. Lorent, J. H. Thywissen, S. P. Smith, M. Drndić, R. M. Wastervelt, and M. Prentiss, Phys. Rev. Lett. 84, 1124 (2000).
[CrossRef] [PubMed]

J. Reichel, W. Hänsel, and T. W. Hänsch, Phys. Rev. Lett. 83, 3398 (1999).
[CrossRef]

R. Folman, P. Krüger, D. Cassettari, B. Hessmo, T. Maier, and J. Schmiedmayer, Phys. Rev. Lett. 84, 4749 (2000).
[CrossRef] [PubMed]

D. Cassettari, B. Hessmo, R. Folman, Th. Maier, and J. Schmiedmayer, Phys. Rev. Lett. 85, 5483 (2000).
[CrossRef]

W. Petrich, M. H. Anderson, J. R. Ensher, and E. A. Cornell, Phys. Rev. Lett. 74, 3352 (1995).
[CrossRef] [PubMed]

E. Andersson, T. Calarco, R. Folman, M. Anderson, B. Hessmo, and J. Schmiedmayer, Phys. Rev. Lett. 88, 100401 (2002).
[CrossRef]

Other (3)

The images are taken by exposing the atoms to a flash (100 µs) of near-resonant laser light. To avoid any disturbing reflections, the light enters the chamber from two directions parallel to the chip surface.

The clouds exhibit an anisotropic temperature profile (450 µK in the transverse and 50 µK in the longitudinal directions) due to a transverse compression during the loading without rethermalization.

By running a parallel current through another wire on the chip, we could even enhance this pushing effect.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Left, schematic drawing of the wire configuration used in the experiment. The black curves indicate current-carrying gold wires, the white areas are grounded parts of the chip surface. Inset, microscope image of a detail of the spiral wire guide. Here the 10µm-wide grooves from which the gold has been removed to define the wires are shown as gray curves. Right, fluorescence of a magnetically trapped cloud and its reflection from the chip surface just before the guide is loaded. The guiding wires are visible through scattered imaging light.

Fig. 2
Fig. 2

Potential configurations during the transfer of atoms from (a) a single-wire guide with horizontal bias field to (c) a two-wire guide with vertical bias field. In each configuration an arrow points in the direction of the bias field and three squares represent the three wires. The current flow is indicated by the symbols in the squares. A dot (cross) corresponds to a current flow out of (into) the plane shown, and a blank square corresponds to zero current. (b) In the intermediate stage the currents run already exclusively through the two wires carrying counterpropagating currents while the bias field has been rotated by 45° with respect to the wire plane.

Fig. 3
Fig. 3

Time sequence of atoms released from the reservoir trap into the spiral guide. Left, fluorescence images. Atoms that have reached the end of the guide (center of the spiral) are reflected from a potential barrier and propagate in the backward direction. Right, one-dimensional density distributions along the path of the spiral, extracted from the experimental data and MC simulations (solid and dashed curves, respectively). Insets, corresponding velocity distributions obtained by the same MC calculations. In these plots a clear signature of the reflection is visible, and the part of the cloud propagating backward is clearly separated from that propagating in the forward direction.

Fig. 4
Fig. 4

Top, time sequence over one oscillation period of a time-orbiting guiding potential. Darker shading corresponds to lower potential. Bottom, each of the counterpropagating currents (solid and dashed curves) in two parallel wires is sinusoidally modulated around the steady current I0 (dotted–dashed line). A relative phase difference of Δϕ=π/2 results in a quadrupole field zero circling around the minimum of the static situation (white arrows). With a proper choice of the modulation frequency, cold atoms are trapped in a time-averaged potential. Although the position of the potential minimum remains unchanged with respect to the static case, the atoms never encounter a magnetic field zero and thus do not undergo Majorana spin flips.

Metrics