Abstract

Chromatic confocal microscopy has the advantage of short measurement times because of its parallel depth scan. As most white-light sources have limited optical output power, light-efficient setups are necessary. Using an extended detection pinhole is one way to improve light efficiency. We have calculated the effect of extended pinholes in chromatic confocal setups. We found that, for certain pinhole sizes, the FWHM of the confocal signal is nearly constant over a large wavelength interval.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. Molesini, G. Pedrini, P. Poggi, and F. Quercioli, Opt. Commun. 49, 229 (1984).
    [CrossRef]
  2. M. A. Browne, O. Akinyemi, and A. Boyde, Scanning 14, 145 (1992).
    [CrossRef]
  3. J. B. Pawley, P. C. Lin, P. C. Sun, L. Zhu, and Y. Fainman, Appl. Opt. 37, 6764 (1998).
    [CrossRef]
  4. H. J. Tiziani and H.-M. Uhde, Appl. Opt. 33, 1838 (1994).
    [CrossRef] [PubMed]
  5. S. Cha, P. C. Lin, L. Zhu, P.-C. Sun, and Y. Fainman, Appl. Opt. 39, 2605 (2000).
    [CrossRef]
  6. H. J. Tiziani, M. Wegner, and D. Steudle, Opt. Eng. 39, 32 (2000).
    [CrossRef]
  7. H. J. Tiziani, R. Achi, R. N. Krämer, and L. Wiegers, Appl. Opt. 35, 120 (1996).
    [CrossRef] [PubMed]
  8. T. Wilson and A. R. Carlini, J. Microsc. 149, 51 (1988).
    [CrossRef]

2000 (2)

S. Cha, P. C. Lin, L. Zhu, P.-C. Sun, and Y. Fainman, Appl. Opt. 39, 2605 (2000).
[CrossRef]

H. J. Tiziani, M. Wegner, and D. Steudle, Opt. Eng. 39, 32 (2000).
[CrossRef]

1998 (1)

1996 (1)

1994 (1)

1992 (1)

M. A. Browne, O. Akinyemi, and A. Boyde, Scanning 14, 145 (1992).
[CrossRef]

1988 (1)

T. Wilson and A. R. Carlini, J. Microsc. 149, 51 (1988).
[CrossRef]

1984 (1)

G. Molesini, G. Pedrini, P. Poggi, and F. Quercioli, Opt. Commun. 49, 229 (1984).
[CrossRef]

Achi, R.

Akinyemi, O.

M. A. Browne, O. Akinyemi, and A. Boyde, Scanning 14, 145 (1992).
[CrossRef]

Boyde, A.

M. A. Browne, O. Akinyemi, and A. Boyde, Scanning 14, 145 (1992).
[CrossRef]

Browne, M. A.

M. A. Browne, O. Akinyemi, and A. Boyde, Scanning 14, 145 (1992).
[CrossRef]

Carlini, A. R.

T. Wilson and A. R. Carlini, J. Microsc. 149, 51 (1988).
[CrossRef]

Cha, S.

Fainman, Y.

Krämer, R. N.

Lin, P. C.

Molesini, G.

G. Molesini, G. Pedrini, P. Poggi, and F. Quercioli, Opt. Commun. 49, 229 (1984).
[CrossRef]

Pawley, J. B.

Pedrini, G.

G. Molesini, G. Pedrini, P. Poggi, and F. Quercioli, Opt. Commun. 49, 229 (1984).
[CrossRef]

Poggi, P.

G. Molesini, G. Pedrini, P. Poggi, and F. Quercioli, Opt. Commun. 49, 229 (1984).
[CrossRef]

Quercioli, F.

G. Molesini, G. Pedrini, P. Poggi, and F. Quercioli, Opt. Commun. 49, 229 (1984).
[CrossRef]

Steudle, D.

H. J. Tiziani, M. Wegner, and D. Steudle, Opt. Eng. 39, 32 (2000).
[CrossRef]

Sun, P. C.

Sun, P.-C.

Tiziani, H. J.

Uhde, H.-M.

Wegner, M.

H. J. Tiziani, M. Wegner, and D. Steudle, Opt. Eng. 39, 32 (2000).
[CrossRef]

Wiegers, L.

Wilson, T.

T. Wilson and A. R. Carlini, J. Microsc. 149, 51 (1988).
[CrossRef]

Zhu, L.

Appl. Opt. (4)

J. Microsc. (1)

T. Wilson and A. R. Carlini, J. Microsc. 149, 51 (1988).
[CrossRef]

Opt. Commun. (1)

G. Molesini, G. Pedrini, P. Poggi, and F. Quercioli, Opt. Commun. 49, 229 (1984).
[CrossRef]

Opt. Eng. (1)

H. J. Tiziani, M. Wegner, and D. Steudle, Opt. Eng. 39, 32 (2000).
[CrossRef]

Scanning (1)

M. A. Browne, O. Akinyemi, and A. Boyde, Scanning 14, 145 (1992).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Schematic of a chromatic confocal point sensor.

Fig. 2
Fig. 2

Wavelength-dependent FWHM in a chromatic confocal sensor.

Fig. 3
Fig. 3

Section of Fig. 1 that displays an interval with little variation in the FWHM.

Fig. 4
Fig. 4

FWHM of chromatic confocal sensors with constant NA and with changes in NA of 2.5% and 5.0% within the measurement range. diffr., diffractive; refr., refractive.

Fig. 5
Fig. 5

FWHM of chromatic confocal sensors with diffractive behavior and changes in NA of 2.5%.

Fig. 6
Fig. 6

FWHM of chromatic confocal sensors with diffractive behavior and changes in NA of 1.9%.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

Iu=0vp01Pρexpjuρ2/2J0vρρρ2vv,
v=2πλNA×r,
u=2πλNA2×z,
vpλ=vpλmaxλmax/λ,
vpvAiry

Metrics