Abstract

An analytical solution for the differential group delay of a fiber spun according to a triangular function is derived from concatenation of Jones matrices for a fiber length equal to N×T, where T is the spinning period and N is an integer. This solution holds for any value of linear deterministic birefringence Δβ of amplitude A and period T of the triangular spinning function. We use the solution to emphasize the effect of birefringence on the efficiency of the spinning function.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. J. Barlow, Appl. Opt. 20, 2962 (1981).
    [CrossRef] [PubMed]
  2. A. Galtarossa, J. Lightwave Technol. 19, 1502 (2001).
    [CrossRef]
  3. M. J. Li, Opt. Lett. 23, 1659 (1998).
    [CrossRef]
  4. X. Chen, Opt. Lett. 27, 294 (2002).
    [CrossRef]
  5. A. Galtarossa, Opt. Lett. 27, 692 (2002).
    [CrossRef]
  6. D. A. Nolan, J. Lightwave Technol. 22, 1066 (2004).
    [CrossRef]
  7. A. Pizzinat, Opt. Lett. 28, 390 (2003).
    [CrossRef] [PubMed]
  8. P. Nouchi, in Proceedings of the 21st European Conference on Optical Communication (ECOC’95) (Interuniversity MicroElectronics Center, Gent, Belgium, 1995), p. 389.
  9. A. Peyrilloux, J. Lightwave Technol. 21, 536 (2003).
    [CrossRef]
  10. J. P. Gordon, Proc. Natl. Acad. Sci. USA 97, 4541 (2000).
    [CrossRef]
  11. M. Karlsson, Opt. Lett. 23, 688 (1998).
    [CrossRef]
  12. P. P. Finet, Optik 84, 169 (1990).
  13. N. Gisin, Opt. Commun. 89, 316 (1992).
    [CrossRef]

2004 (1)

2003 (2)

2002 (2)

2001 (1)

2000 (1)

J. P. Gordon, Proc. Natl. Acad. Sci. USA 97, 4541 (2000).
[CrossRef]

1998 (2)

1992 (1)

N. Gisin, Opt. Commun. 89, 316 (1992).
[CrossRef]

1990 (1)

P. P. Finet, Optik 84, 169 (1990).

1981 (1)

Barlow, A. J.

Chen, X.

Finet, P. P.

P. P. Finet, Optik 84, 169 (1990).

Galtarossa, A.

Gisin, N.

N. Gisin, Opt. Commun. 89, 316 (1992).
[CrossRef]

Gordon, J. P.

J. P. Gordon, Proc. Natl. Acad. Sci. USA 97, 4541 (2000).
[CrossRef]

Karlsson, M.

Li, M. J.

Nolan, D. A.

Nouchi, P.

P. Nouchi, in Proceedings of the 21st European Conference on Optical Communication (ECOC’95) (Interuniversity MicroElectronics Center, Gent, Belgium, 1995), p. 389.

Peyrilloux, A.

Pizzinat, A.

Appl. Opt. (1)

J. Lightwave Technol. (3)

Opt. Commun. (1)

N. Gisin, Opt. Commun. 89, 316 (1992).
[CrossRef]

Opt. Lett. (5)

Optik (1)

P. P. Finet, Optik 84, 169 (1990).

Proc. Natl. Acad. Sci. USA (1)

J. P. Gordon, Proc. Natl. Acad. Sci. USA 97, 4541 (2000).
[CrossRef]

Other (1)

P. Nouchi, in Proceedings of the 21st European Conference on Optical Communication (ECOC’95) (Interuniversity MicroElectronics Center, Gent, Belgium, 1995), p. 389.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (2)

Fig. 1
Fig. 1

DGD [Eq. (10)] and DGDenv [Eq. (13)] versus A for N=1; T=5 m; and Δβ=56, 12, and 1 m-1 from the top to the bottom curve.

Fig. 2
Fig. 2

DGD [Eq. (10)] and DGDenv [Eq. (13)] versus A for N=100; T=5 m; and Δβ=56, 12, and 1 m-1 from the top to the bottom curve.

Equations (16)

Equations on this page are rendered with MathJax. Learn more.

Uz,z=exp-jσ3θz×exp-jΔβσ1-2τσ3z-z2×expjσ3θz,
θz=2Az/T0<z<t/22A1-z/TT/2<z<T.
UT,0=cos δI-jeδ sin δ,
cos δ=1-2TΔβ/4Δ2 sin2 Δ,
sin δ=2TΔβ4sinc Δcos2 Δ+A2Δ2 sin2 Δ1/2,
eδ=TΔβ2 sin-1 δsinc 2Δe1+Asinc2 Δe2,
Δ=TΔβ42+A21/2.
UNT,0=cos NδI-jeˆδ sin Nδ.
ΩNT=2Nωδeδ-2 sin2Nδωeδ×eδ+sin2Nδωeδ,
DGDNT=2N2ωδ2+ωeδ2 sin2 Nδ1/2.
ωeδ2 sin2 Nδ=TΔβ/4Δ2AΔ2×1-sinc 2Δ2cos2 Δ+AΔ2 sin2 Δ2×TΔτ216sin2 Nδ,
N2ωδ2=AΔ4sinc Δ+TΔβ/4A2 cos Δ2cos2 Δ+AΔ2 sin2 Δ×TΔτ24N2,
DGDenvNT=NTΔτA2+B42Δ41+1-1-A4Δ4×1-A2-B42A2+B421/21/2,
DGDNTNTΔτsin AA.
DGDenvNTNTΔτ1-AB2.
DGDenvNTNTΔτA2+B4Δ2.

Metrics