Abstract

We demonstrate a compact extrinsic Fabry–Perot interferometer-based fiber-optic sensor that uses magnetostrictive amorphous metallic wire Unitika AF-10 (Fe77.5B15Si7.5) as a sensor gauge for measuring dc magnetic fields. We present a theoretical model based on a Gaussian electric field distribution to analyze the sensor operation as a function of longitudinal air-gap separation. The model shows good agreement with the experimental results. A resolution of 50 nT over a range of 50–40,000 nT with a simple passive temperature-compensation method is obtained.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. O. Claus, M. F. Gunther, A. Wang, and K. A. Murphy, Smart Mater. Struct. 1, 237 (1992).
    [CrossRef]
  2. R. B. Wagreich and C. C. Davis, J. Lightwave Technol. 14, 2246 (1996).
    [CrossRef]
  3. C. M. Dube, S. Thordarson, and K. H. Wansor, Proc. SPIE 838, 17 (1987).
    [CrossRef]
  4. G. P. Agrawal, Fiber-Optic Communication Systems (Wiley, New York, 1992), pp. 22–74.
  5. D. Marcuse, Bell Syst. Tech. J. 56, 703 (1977).
    [CrossRef]
  6. J. D. Livingstone, Phys. Status Solidi 70, 591 (1982).
    [CrossRef]
  7. K. A. Murphy, M. F. Gunther, A. M. Vengsarkar, and R. O. Claus, Opt. Lett. 16, 273 (1991).
    [CrossRef] [PubMed]
  8. Ki. D. Oh, J. Ranade, V. Arya, A. Wang, and R. O. Claus, IEEE Photon. Technol. Lett. 9, 797 (1997).
    [CrossRef]

1997

Ki. D. Oh, J. Ranade, V. Arya, A. Wang, and R. O. Claus, IEEE Photon. Technol. Lett. 9, 797 (1997).
[CrossRef]

1996

R. B. Wagreich and C. C. Davis, J. Lightwave Technol. 14, 2246 (1996).
[CrossRef]

1992

R. O. Claus, M. F. Gunther, A. Wang, and K. A. Murphy, Smart Mater. Struct. 1, 237 (1992).
[CrossRef]

1991

1987

C. M. Dube, S. Thordarson, and K. H. Wansor, Proc. SPIE 838, 17 (1987).
[CrossRef]

1982

J. D. Livingstone, Phys. Status Solidi 70, 591 (1982).
[CrossRef]

1977

D. Marcuse, Bell Syst. Tech. J. 56, 703 (1977).
[CrossRef]

Agrawal, G. P.

G. P. Agrawal, Fiber-Optic Communication Systems (Wiley, New York, 1992), pp. 22–74.

Arya, V.

Ki. D. Oh, J. Ranade, V. Arya, A. Wang, and R. O. Claus, IEEE Photon. Technol. Lett. 9, 797 (1997).
[CrossRef]

Claus, R. O.

Ki. D. Oh, J. Ranade, V. Arya, A. Wang, and R. O. Claus, IEEE Photon. Technol. Lett. 9, 797 (1997).
[CrossRef]

R. O. Claus, M. F. Gunther, A. Wang, and K. A. Murphy, Smart Mater. Struct. 1, 237 (1992).
[CrossRef]

K. A. Murphy, M. F. Gunther, A. M. Vengsarkar, and R. O. Claus, Opt. Lett. 16, 273 (1991).
[CrossRef] [PubMed]

Davis, C. C.

R. B. Wagreich and C. C. Davis, J. Lightwave Technol. 14, 2246 (1996).
[CrossRef]

Dube, C. M.

C. M. Dube, S. Thordarson, and K. H. Wansor, Proc. SPIE 838, 17 (1987).
[CrossRef]

Gunther, M. F.

R. O. Claus, M. F. Gunther, A. Wang, and K. A. Murphy, Smart Mater. Struct. 1, 237 (1992).
[CrossRef]

K. A. Murphy, M. F. Gunther, A. M. Vengsarkar, and R. O. Claus, Opt. Lett. 16, 273 (1991).
[CrossRef] [PubMed]

Livingstone, J. D.

J. D. Livingstone, Phys. Status Solidi 70, 591 (1982).
[CrossRef]

Marcuse, D.

D. Marcuse, Bell Syst. Tech. J. 56, 703 (1977).
[CrossRef]

Murphy, K. A.

R. O. Claus, M. F. Gunther, A. Wang, and K. A. Murphy, Smart Mater. Struct. 1, 237 (1992).
[CrossRef]

K. A. Murphy, M. F. Gunther, A. M. Vengsarkar, and R. O. Claus, Opt. Lett. 16, 273 (1991).
[CrossRef] [PubMed]

Oh, Ki. D.

Ki. D. Oh, J. Ranade, V. Arya, A. Wang, and R. O. Claus, IEEE Photon. Technol. Lett. 9, 797 (1997).
[CrossRef]

Ranade, J.

Ki. D. Oh, J. Ranade, V. Arya, A. Wang, and R. O. Claus, IEEE Photon. Technol. Lett. 9, 797 (1997).
[CrossRef]

Thordarson, S.

C. M. Dube, S. Thordarson, and K. H. Wansor, Proc. SPIE 838, 17 (1987).
[CrossRef]

Vengsarkar, A. M.

Wagreich, R. B.

R. B. Wagreich and C. C. Davis, J. Lightwave Technol. 14, 2246 (1996).
[CrossRef]

Wang, A.

Ki. D. Oh, J. Ranade, V. Arya, A. Wang, and R. O. Claus, IEEE Photon. Technol. Lett. 9, 797 (1997).
[CrossRef]

R. O. Claus, M. F. Gunther, A. Wang, and K. A. Murphy, Smart Mater. Struct. 1, 237 (1992).
[CrossRef]

Wansor, K. H.

C. M. Dube, S. Thordarson, and K. H. Wansor, Proc. SPIE 838, 17 (1987).
[CrossRef]

Bell Syst. Tech. J.

D. Marcuse, Bell Syst. Tech. J. 56, 703 (1977).
[CrossRef]

IEEE Photon. Technol. Lett.

Ki. D. Oh, J. Ranade, V. Arya, A. Wang, and R. O. Claus, IEEE Photon. Technol. Lett. 9, 797 (1997).
[CrossRef]

J. Lightwave Technol.

R. B. Wagreich and C. C. Davis, J. Lightwave Technol. 14, 2246 (1996).
[CrossRef]

Opt. Lett.

Phys. Status Solidi

J. D. Livingstone, Phys. Status Solidi 70, 591 (1982).
[CrossRef]

Proc. SPIE

C. M. Dube, S. Thordarson, and K. H. Wansor, Proc. SPIE 838, 17 (1987).
[CrossRef]

Smart Mater. Struct.

R. O. Claus, M. F. Gunther, A. Wang, and K. A. Murphy, Smart Mater. Struct. 1, 237 (1992).
[CrossRef]

Other

G. P. Agrawal, Fiber-Optic Communication Systems (Wiley, New York, 1992), pp. 22–74.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Schematic of an extrinsic Fabry–Perot interferometry-based dc magnetic field sensor.

Fig. 2
Fig. 2

(a) Variation of output power using Eq. (3) with increasing gap separation: R1=0.04 and R2=0.1. (b) Time-domain trace with varying gap separation: reducing to zero and then increasing from zero. Additional phase change π of second reflection gives zero power at z=0. (c) Fringe visibility comparison as a function of gap separation for (b).

Fig. 3
Fig. 3

Temperature-compensated outputs (a) using coefficients from solutions of Eq. (5) and (b) applying compensator length adjustment Ladj in addition to (a), resulting in compensation >99%.

Fig. 4
Fig. 4

System calibration curve for dc magnetic field measurement.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

E=E0 exp-ρ2g2zexp-jkz,
I=2P0R1πg02 exp-2ρ2g02+2P0RAπg2z exp-2ρ2g2z+P0RBπg0gz exp-ρ2g02-ρ2g2zcosΔφ,
P=P0R11-exp-2+RA1-exp-2g02g2z+RBg0gzfz-11-exp-fzg02cosΔφ,
Cm-CfL1-Ct-CfL2=ΔL/ΔT,
A1-B1A2-B2CmCt=ΔL/ΔT1-B1-A1CfΔL/ΔT2-B2-A2Cf,

Metrics