Abstract

A synchronization scheme for extraction of low-jitter rf signals from optical pulse trains, which is robust against photodetector nonlinearities, is described. The scheme is based on a transfer of timing information into an intensity imbalance of the two output beams from a Sagnac loop. Sub-100-fs timing jitter between the extracted 2-GHz rf signal and the 100-MHz optical pulse train from a mode-locked Ti:sapphire laser is demonstrated.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, Science 288, 635 (2000).
    [CrossRef] [PubMed]
  2. R. Holzwarth, Th. Udem, T. W. Haensch, J. C. Knight, W. J. Wadsworth, and P. St. J. Russell, Phys. Rev. Lett. 85, 2264 (2000).
    [CrossRef] [PubMed]
  3. E. N. Ivanov, S. A. Diddams, and L. Hollberg, IEEE J. Sel. Top. Quantum Electron. 9, 1059 (2003).
    [CrossRef]
  4. M. H. Perrott, “PLL design using the PLL Design Assistant program” (MIT High Speed Circuits and Systems Group, Cambridge, Mass., 2002), http://www-mtl.mit.edu/research/perrottgroup/tools.html .
  5. Aeroflex, “PN9000 Automated Phase Noise Measurement System,” (Aeroflex, Plainview, N.Y., 2003).
  6. R. P. Scott, C. Langrock, and B. H. Kolner, IEEE J. Sel. Top. Quantum Electron. 7, 641 (2001).
    [CrossRef]
  7. R. K. Shelton, S. M. Foreman, L.-S. Ma, J. L. Hall, H. C. Kapteyn, M. M. Murnane, M. Notcutt, and J. Ye, Opt. Lett. 27, 312 (2002).
    [CrossRef]
  8. A. Bartels, S. A. Diddams, T. M. Ramond, and L. Hollberg, Opt. Lett. 28, 663 (2003).
    [CrossRef] [PubMed]
  9. T. R. Schibli, J. Kim, O. Kuzucu, J. T. Gopinath, S. N. Tandon, G. S. Petrich, L. A. Kolodziejski, J. G. Fujimoto, E. P. Ippen, and F. X. Kaertner, Opt. Lett. 28, 947 (2003).
    [CrossRef] [PubMed]

2003 (3)

2002 (1)

2001 (1)

R. P. Scott, C. Langrock, and B. H. Kolner, IEEE J. Sel. Top. Quantum Electron. 7, 641 (2001).
[CrossRef]

2000 (2)

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, Science 288, 635 (2000).
[CrossRef] [PubMed]

R. Holzwarth, Th. Udem, T. W. Haensch, J. C. Knight, W. J. Wadsworth, and P. St. J. Russell, Phys. Rev. Lett. 85, 2264 (2000).
[CrossRef] [PubMed]

Bartels, A.

Cundiff, S. T.

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, Science 288, 635 (2000).
[CrossRef] [PubMed]

Diddams, S. A.

A. Bartels, S. A. Diddams, T. M. Ramond, and L. Hollberg, Opt. Lett. 28, 663 (2003).
[CrossRef] [PubMed]

E. N. Ivanov, S. A. Diddams, and L. Hollberg, IEEE J. Sel. Top. Quantum Electron. 9, 1059 (2003).
[CrossRef]

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, Science 288, 635 (2000).
[CrossRef] [PubMed]

Foreman, S. M.

Fujimoto, J. G.

Gopinath, J. T.

Haensch, T. W.

R. Holzwarth, Th. Udem, T. W. Haensch, J. C. Knight, W. J. Wadsworth, and P. St. J. Russell, Phys. Rev. Lett. 85, 2264 (2000).
[CrossRef] [PubMed]

Hall, J. L.

R. K. Shelton, S. M. Foreman, L.-S. Ma, J. L. Hall, H. C. Kapteyn, M. M. Murnane, M. Notcutt, and J. Ye, Opt. Lett. 27, 312 (2002).
[CrossRef]

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, Science 288, 635 (2000).
[CrossRef] [PubMed]

Hollberg, L.

A. Bartels, S. A. Diddams, T. M. Ramond, and L. Hollberg, Opt. Lett. 28, 663 (2003).
[CrossRef] [PubMed]

E. N. Ivanov, S. A. Diddams, and L. Hollberg, IEEE J. Sel. Top. Quantum Electron. 9, 1059 (2003).
[CrossRef]

Holzwarth, R.

R. Holzwarth, Th. Udem, T. W. Haensch, J. C. Knight, W. J. Wadsworth, and P. St. J. Russell, Phys. Rev. Lett. 85, 2264 (2000).
[CrossRef] [PubMed]

Ippen, E. P.

Ivanov, E. N.

E. N. Ivanov, S. A. Diddams, and L. Hollberg, IEEE J. Sel. Top. Quantum Electron. 9, 1059 (2003).
[CrossRef]

Jones, D. J.

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, Science 288, 635 (2000).
[CrossRef] [PubMed]

Kaertner, F. X.

Kapteyn, H. C.

Kim, J.

Knight, J. C.

R. Holzwarth, Th. Udem, T. W. Haensch, J. C. Knight, W. J. Wadsworth, and P. St. J. Russell, Phys. Rev. Lett. 85, 2264 (2000).
[CrossRef] [PubMed]

Kolner, B. H.

R. P. Scott, C. Langrock, and B. H. Kolner, IEEE J. Sel. Top. Quantum Electron. 7, 641 (2001).
[CrossRef]

Kolodziejski, L. A.

Kuzucu, O.

Langrock, C.

R. P. Scott, C. Langrock, and B. H. Kolner, IEEE J. Sel. Top. Quantum Electron. 7, 641 (2001).
[CrossRef]

Ma, L.-S.

Murnane, M. M.

Notcutt, M.

Perrott, M. H.

M. H. Perrott, “PLL design using the PLL Design Assistant program” (MIT High Speed Circuits and Systems Group, Cambridge, Mass., 2002), http://www-mtl.mit.edu/research/perrottgroup/tools.html .

Petrich, G. S.

Ramond, T. M.

Ranka, J. K.

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, Science 288, 635 (2000).
[CrossRef] [PubMed]

Russell, P. St. J.

R. Holzwarth, Th. Udem, T. W. Haensch, J. C. Knight, W. J. Wadsworth, and P. St. J. Russell, Phys. Rev. Lett. 85, 2264 (2000).
[CrossRef] [PubMed]

Schibli, T. R.

Scott, R. P.

R. P. Scott, C. Langrock, and B. H. Kolner, IEEE J. Sel. Top. Quantum Electron. 7, 641 (2001).
[CrossRef]

Shelton, R. K.

Stentz, A.

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, Science 288, 635 (2000).
[CrossRef] [PubMed]

Tandon, S. N.

Udem, Th.

R. Holzwarth, Th. Udem, T. W. Haensch, J. C. Knight, W. J. Wadsworth, and P. St. J. Russell, Phys. Rev. Lett. 85, 2264 (2000).
[CrossRef] [PubMed]

Wadsworth, W. J.

R. Holzwarth, Th. Udem, T. W. Haensch, J. C. Knight, W. J. Wadsworth, and P. St. J. Russell, Phys. Rev. Lett. 85, 2264 (2000).
[CrossRef] [PubMed]

Windeler, R. S.

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, Science 288, 635 (2000).
[CrossRef] [PubMed]

Ye, J.

IEEE J. Sel. Top. Quantum Electron. (2)

E. N. Ivanov, S. A. Diddams, and L. Hollberg, IEEE J. Sel. Top. Quantum Electron. 9, 1059 (2003).
[CrossRef]

R. P. Scott, C. Langrock, and B. H. Kolner, IEEE J. Sel. Top. Quantum Electron. 7, 641 (2001).
[CrossRef]

Opt. Lett. (3)

Phys. Rev. Lett. (1)

R. Holzwarth, Th. Udem, T. W. Haensch, J. C. Knight, W. J. Wadsworth, and P. St. J. Russell, Phys. Rev. Lett. 85, 2264 (2000).
[CrossRef] [PubMed]

Science (1)

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, Science 288, 635 (2000).
[CrossRef] [PubMed]

Other (2)

M. H. Perrott, “PLL design using the PLL Design Assistant program” (MIT High Speed Circuits and Systems Group, Cambridge, Mass., 2002), http://www-mtl.mit.edu/research/perrottgroup/tools.html .

Aeroflex, “PN9000 Automated Phase Noise Measurement System,” (Aeroflex, Plainview, N.Y., 2003).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Schematic setup for rf signal extraction from an optical pulse train. Each multiple of the repetition rate can be extracted.

Fig. 2
Fig. 2

Scheme for extraction of a 2-GHz signal from a 100-MHz repetition-rate Ti:sapphire laser. PLL, phase-locked loop; ML, mode-locked; BP, bandpass.

Fig. 3
Fig. 3

VCO output is characterized (i) by a commercial phase noise test system and (ii) by mixing in quadrature with the 2-GHz component of the directly detected signal. The resulting signal is measured with a vector signal analyzer. The normalization constant for calibration to the rf phase is measured independently with an oscilloscope. LP, low-pass.

Fig. 4
Fig. 4

Measured single-sideband (SSB) phase noise of (1) the free-running VCO and (2) the locked VCO using a commercial phase noise measurement system. Curve 3 shows the measured single-sideband phase noise between the extracted rf signal and the 20th harmonic of the directly detected pulse train using a mixer and vector signal analyzer. Curve 4 shows the noise floor of the vector signal analyzer. Curve 5 shows the estimated phase noise level of the extracted rf signal from the result of curve 2.

Metrics