Abstract

We demonstrate ultrasensitive intensity autocorrelation measurements of subpicosecond optical pulses in the telecommunication band by using aperiodically poled lithium niobate (A-PPLN) waveguides. The tightly confined optical beam in the waveguides and the chirped poling period facilitate simultaneous high second-harmonic generation (SHG) efficiency and broad phase-matching (PM) bandwidth. The resulting measurement sensitivity is 3.2×10-7 mW2, 500 times better than the previous record for intensity autocorrelations. We also show that chirped A-PPLN waveguides retain nearly the same SHG efficiency as the unchirped guide as long as the PM bandwidth is not significantly broader than the input spectrum.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. N. Fittinghoff, J. L. Bowie, J. N. Sweetser, R. T. Jennings, M. A. Krumbugel, K. W. DeLong, R. Trebino, and I. A. Walmsley, Opt. Lett. 21, 884 (1996).
    [CrossRef] [PubMed]
  2. A. M. Weiner, IEEE J. Quantum Electron. QE-19, 1276 (1983).
    [CrossRef]
  3. C. Xu, J. M. Roth, W. H. Knox, and K. Bergman, Electron. Lett. 38, 86 (2002).
    [CrossRef]
  4. J. M. Roth, T. E. Murphy, and C. Xu, Opt. Lett. 27, 2076 (2002).
    [CrossRef]
  5. L. P. Barry, B. C. Thomsen, J. M. Dudley, and J. D. Harvey, Electron. Lett. 34, 358 (1998).
    [CrossRef]
  6. K. R. Parameswaran, J. R. Kurz, R. V. Roussev, and M. M. Fejer, Opt. Lett. 27, 43 (2002).
    [CrossRef]
  7. G. Imeshev, M. A. Arbore, M. M. Fejer, A. Galvanauskas, M. Fermann, and D. Harter, J. Opt. Soc. Am. B 17, 304 (2000).
    [CrossRef]
  8. M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, IEEE J. Quantum Electron. 28, 2631 (1992).
    [CrossRef]
  9. P. O’Shea, M. Kimmel, X. Gu, and R. Trebino, Opt. Lett. 26, 932 (2001).
    [CrossRef]
  10. C. Iaconis and I. A. Walmsley, IEEE J. Quantum Electron. 35, 501 (1999).
    [CrossRef]

2002 (3)

2001 (1)

2000 (1)

1999 (1)

C. Iaconis and I. A. Walmsley, IEEE J. Quantum Electron. 35, 501 (1999).
[CrossRef]

1998 (1)

L. P. Barry, B. C. Thomsen, J. M. Dudley, and J. D. Harvey, Electron. Lett. 34, 358 (1998).
[CrossRef]

1996 (1)

1992 (1)

M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, IEEE J. Quantum Electron. 28, 2631 (1992).
[CrossRef]

1983 (1)

A. M. Weiner, IEEE J. Quantum Electron. QE-19, 1276 (1983).
[CrossRef]

Arbore, M. A.

Barry, L. P.

L. P. Barry, B. C. Thomsen, J. M. Dudley, and J. D. Harvey, Electron. Lett. 34, 358 (1998).
[CrossRef]

Bergman, K.

C. Xu, J. M. Roth, W. H. Knox, and K. Bergman, Electron. Lett. 38, 86 (2002).
[CrossRef]

Bowie, J. L.

Byer, R. L.

M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, IEEE J. Quantum Electron. 28, 2631 (1992).
[CrossRef]

DeLong, K. W.

Dudley, J. M.

L. P. Barry, B. C. Thomsen, J. M. Dudley, and J. D. Harvey, Electron. Lett. 34, 358 (1998).
[CrossRef]

Fejer, M. M.

Fermann, M.

Fittinghoff, D. N.

Galvanauskas, A.

Gu, X.

Harter, D.

Harvey, J. D.

L. P. Barry, B. C. Thomsen, J. M. Dudley, and J. D. Harvey, Electron. Lett. 34, 358 (1998).
[CrossRef]

Iaconis, C.

C. Iaconis and I. A. Walmsley, IEEE J. Quantum Electron. 35, 501 (1999).
[CrossRef]

Imeshev, G.

Jennings, R. T.

Jundt, D. H.

M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, IEEE J. Quantum Electron. 28, 2631 (1992).
[CrossRef]

Kimmel, M.

Knox, W. H.

C. Xu, J. M. Roth, W. H. Knox, and K. Bergman, Electron. Lett. 38, 86 (2002).
[CrossRef]

Krumbugel, M. A.

Kurz, J. R.

Magel, G. A.

M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, IEEE J. Quantum Electron. 28, 2631 (1992).
[CrossRef]

Murphy, T. E.

O’Shea, P.

Parameswaran, K. R.

Roth, J. M.

J. M. Roth, T. E. Murphy, and C. Xu, Opt. Lett. 27, 2076 (2002).
[CrossRef]

C. Xu, J. M. Roth, W. H. Knox, and K. Bergman, Electron. Lett. 38, 86 (2002).
[CrossRef]

Roussev, R. V.

Sweetser, J. N.

Thomsen, B. C.

L. P. Barry, B. C. Thomsen, J. M. Dudley, and J. D. Harvey, Electron. Lett. 34, 358 (1998).
[CrossRef]

Trebino, R.

Walmsley, I. A.

Weiner, A. M.

A. M. Weiner, IEEE J. Quantum Electron. QE-19, 1276 (1983).
[CrossRef]

Xu, C.

C. Xu, J. M. Roth, W. H. Knox, and K. Bergman, Electron. Lett. 38, 86 (2002).
[CrossRef]

J. M. Roth, T. E. Murphy, and C. Xu, Opt. Lett. 27, 2076 (2002).
[CrossRef]

Electron. Lett. (2)

C. Xu, J. M. Roth, W. H. Knox, and K. Bergman, Electron. Lett. 38, 86 (2002).
[CrossRef]

L. P. Barry, B. C. Thomsen, J. M. Dudley, and J. D. Harvey, Electron. Lett. 34, 358 (1998).
[CrossRef]

IEEE J. Quantum Electron. (3)

M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, IEEE J. Quantum Electron. 28, 2631 (1992).
[CrossRef]

C. Iaconis and I. A. Walmsley, IEEE J. Quantum Electron. 35, 501 (1999).
[CrossRef]

A. M. Weiner, IEEE J. Quantum Electron. QE-19, 1276 (1983).
[CrossRef]

J. Opt. Soc. Am. B (1)

Opt. Lett. (4)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

SHG PM spectra of (a) an unchirped PPLN waveguide and (b) a 25-nm BW chirped A-PPLN waveguide. The vertical axis gives the efficiency in percent per watt.

Fig. 2
Fig. 2

Autocorrelation traces obtained by a 25-nm BW A-PPLN waveguide for coupled pulse energies of 12 fJ and 52 aJ.

Fig. 3
Fig. 3

Autocorrelation traces for bulk LiIO3 and a 25-nm BW A-PPLN waveguide.

Fig. 4
Fig. 4

Relative SHG efficiency versus PM BW for unchirped PM BW=0.17 nm and chirped PM BW=5,10,15,20,25 nm waveguides. The simulation assumes square Hω2 with different widths but constant areas.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

U2ω-A2ωω2dω=-PNLω2Hω2dω.

Metrics