Abstract

We report noncollinear, degenerate four-wave mixing experiments that employ a new device based on two-dimensional femtosecond pulse shaping that delays and modulates all incident fields. Heterodyne detection is easily implemented due to the full phase stability of the device.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Mukamel, Annu. Rev. Phys. Chem. 51, 691 (2000), and references therein.
  2. D. A. Blank, L. J. Kaufman, and G. R. Fleming, J. Chem. Phys. 113, 771 (2000).
  3. K. A. Merchant, D. E. Thompson, and M. D. Fayer, Phys. Rev. Lett. 86, 3899 (2001).
    [CrossRef] [PubMed]
  4. J. D. Hybl, A. W. Albrecht, S. M. Gallagher Faeder, and D. M. Jonas, Chem. Phys. Lett. 297, 307 (1998).
  5. N. Demirdoven, M. Khalil, and A. Tokmakoff, Phys. Rev. Lett. 89, 237401.1 (2002).
    [CrossRef]
  6. M. Khalil, N. Demirdoven, and A. Tokmakoff, Phys. Rev. Lett. 90, 047401.1 (2003).
    [CrossRef]
  7. P. F. Tian, D. Keusters, Y. Suzaki, and W. S. Warren, Science 300, 1553 (2003).
    [CrossRef] [PubMed]
  8. M. S. Pshenichnikov, W. P. de Boeij, and D. A. Wiersma, Phys. Rev. Lett. 76, 4701 (1996).
    [CrossRef] [PubMed]
  9. O. Golonzka, N. Demirdöven, M. Khalil, and A. Tokmakoff, J. Chem. Phys. 113, 9893 (2000).
  10. D. Oron, N. Dudovich, and Y. Silberberg, J. Chem. Phys. 118, 9208 (2003), and references therein.
  11. A. M. Weiner, Rev. Sci. Instrum. 71, 1929 (2000).
    [CrossRef]
  12. J. C. Vaughan, T. Feurer, and K. A. Nelson, J. Opt. Soc. Am. B 19, 2489 (2002).
    [CrossRef]
  13. J. C. Vaughan, T. Feurer, and K. A. Nelson, Opt. Lett. 28, 2408 (2003).
    [CrossRef] [PubMed]
  14. T. Crimmins, N. S. Stoyanov, and K. A. Nelson, J. Chem. Phys. 117, 2882 (2002).
  15. Y.-X. Yan and K. A. Nelson, J. Chem. Phys. 87, 6340 (1987).
  16. T. Lang and M. Motzkus, J. Opt. Soc. Am. B 19, 340 (2002).
    [CrossRef]
  17. W. P. de Boeij, M. S. Pshenichnikov, and D. A. Wiersma, Chem. Phys. Lett. 238, 1 (1995).
  18. D. N. Fittinghoff, J. L. Bowie, J. N. Sweetser, R. T. Jennings, M. A. Krumbügel, K. W. DeLong, R. Trebino, and I. A. Walmsley, Opt. Lett. 21, 884 (1996).
    [CrossRef] [PubMed]
  19. M. Hacker, G. Stobrawa, R. Sauerbrey, T. Buckup, M. Motzkus, M. Wildenhain, and A. Gehner, Appl. Phys. B 76, 711 (2003).
    [CrossRef]

2003 (5)

M. Khalil, N. Demirdoven, and A. Tokmakoff, Phys. Rev. Lett. 90, 047401.1 (2003).
[CrossRef]

P. F. Tian, D. Keusters, Y. Suzaki, and W. S. Warren, Science 300, 1553 (2003).
[CrossRef] [PubMed]

D. Oron, N. Dudovich, and Y. Silberberg, J. Chem. Phys. 118, 9208 (2003), and references therein.

M. Hacker, G. Stobrawa, R. Sauerbrey, T. Buckup, M. Motzkus, M. Wildenhain, and A. Gehner, Appl. Phys. B 76, 711 (2003).
[CrossRef]

J. C. Vaughan, T. Feurer, and K. A. Nelson, Opt. Lett. 28, 2408 (2003).
[CrossRef] [PubMed]

2002 (4)

T. Lang and M. Motzkus, J. Opt. Soc. Am. B 19, 340 (2002).
[CrossRef]

J. C. Vaughan, T. Feurer, and K. A. Nelson, J. Opt. Soc. Am. B 19, 2489 (2002).
[CrossRef]

T. Crimmins, N. S. Stoyanov, and K. A. Nelson, J. Chem. Phys. 117, 2882 (2002).

N. Demirdoven, M. Khalil, and A. Tokmakoff, Phys. Rev. Lett. 89, 237401.1 (2002).
[CrossRef]

2001 (1)

K. A. Merchant, D. E. Thompson, and M. D. Fayer, Phys. Rev. Lett. 86, 3899 (2001).
[CrossRef] [PubMed]

2000 (4)

S. Mukamel, Annu. Rev. Phys. Chem. 51, 691 (2000), and references therein.

D. A. Blank, L. J. Kaufman, and G. R. Fleming, J. Chem. Phys. 113, 771 (2000).

O. Golonzka, N. Demirdöven, M. Khalil, and A. Tokmakoff, J. Chem. Phys. 113, 9893 (2000).

A. M. Weiner, Rev. Sci. Instrum. 71, 1929 (2000).
[CrossRef]

1998 (1)

J. D. Hybl, A. W. Albrecht, S. M. Gallagher Faeder, and D. M. Jonas, Chem. Phys. Lett. 297, 307 (1998).

1996 (2)

1995 (1)

W. P. de Boeij, M. S. Pshenichnikov, and D. A. Wiersma, Chem. Phys. Lett. 238, 1 (1995).

1987 (1)

Y.-X. Yan and K. A. Nelson, J. Chem. Phys. 87, 6340 (1987).

Albrecht, A. W.

J. D. Hybl, A. W. Albrecht, S. M. Gallagher Faeder, and D. M. Jonas, Chem. Phys. Lett. 297, 307 (1998).

Blank, D. A.

D. A. Blank, L. J. Kaufman, and G. R. Fleming, J. Chem. Phys. 113, 771 (2000).

Bowie, J. L.

Buckup, T.

M. Hacker, G. Stobrawa, R. Sauerbrey, T. Buckup, M. Motzkus, M. Wildenhain, and A. Gehner, Appl. Phys. B 76, 711 (2003).
[CrossRef]

Crimmins, T.

T. Crimmins, N. S. Stoyanov, and K. A. Nelson, J. Chem. Phys. 117, 2882 (2002).

de Boeij, W. P.

M. S. Pshenichnikov, W. P. de Boeij, and D. A. Wiersma, Phys. Rev. Lett. 76, 4701 (1996).
[CrossRef] [PubMed]

W. P. de Boeij, M. S. Pshenichnikov, and D. A. Wiersma, Chem. Phys. Lett. 238, 1 (1995).

DeLong, K. W.

Demirdoven, N.

M. Khalil, N. Demirdoven, and A. Tokmakoff, Phys. Rev. Lett. 90, 047401.1 (2003).
[CrossRef]

N. Demirdoven, M. Khalil, and A. Tokmakoff, Phys. Rev. Lett. 89, 237401.1 (2002).
[CrossRef]

Demirdöven, N.

O. Golonzka, N. Demirdöven, M. Khalil, and A. Tokmakoff, J. Chem. Phys. 113, 9893 (2000).

Dudovich, N.

D. Oron, N. Dudovich, and Y. Silberberg, J. Chem. Phys. 118, 9208 (2003), and references therein.

Fayer, M. D.

K. A. Merchant, D. E. Thompson, and M. D. Fayer, Phys. Rev. Lett. 86, 3899 (2001).
[CrossRef] [PubMed]

Feurer, T.

Fittinghoff, D. N.

Fleming, G. R.

D. A. Blank, L. J. Kaufman, and G. R. Fleming, J. Chem. Phys. 113, 771 (2000).

Gallagher Faeder, S. M.

J. D. Hybl, A. W. Albrecht, S. M. Gallagher Faeder, and D. M. Jonas, Chem. Phys. Lett. 297, 307 (1998).

Gehner, A.

M. Hacker, G. Stobrawa, R. Sauerbrey, T. Buckup, M. Motzkus, M. Wildenhain, and A. Gehner, Appl. Phys. B 76, 711 (2003).
[CrossRef]

Golonzka, O.

O. Golonzka, N. Demirdöven, M. Khalil, and A. Tokmakoff, J. Chem. Phys. 113, 9893 (2000).

Hacker, M.

M. Hacker, G. Stobrawa, R. Sauerbrey, T. Buckup, M. Motzkus, M. Wildenhain, and A. Gehner, Appl. Phys. B 76, 711 (2003).
[CrossRef]

Hybl, J. D.

J. D. Hybl, A. W. Albrecht, S. M. Gallagher Faeder, and D. M. Jonas, Chem. Phys. Lett. 297, 307 (1998).

Jennings, R. T.

Jonas, D. M.

J. D. Hybl, A. W. Albrecht, S. M. Gallagher Faeder, and D. M. Jonas, Chem. Phys. Lett. 297, 307 (1998).

Kaufman, L. J.

D. A. Blank, L. J. Kaufman, and G. R. Fleming, J. Chem. Phys. 113, 771 (2000).

Keusters, D.

P. F. Tian, D. Keusters, Y. Suzaki, and W. S. Warren, Science 300, 1553 (2003).
[CrossRef] [PubMed]

Khalil, M.

M. Khalil, N. Demirdoven, and A. Tokmakoff, Phys. Rev. Lett. 90, 047401.1 (2003).
[CrossRef]

N. Demirdoven, M. Khalil, and A. Tokmakoff, Phys. Rev. Lett. 89, 237401.1 (2002).
[CrossRef]

O. Golonzka, N. Demirdöven, M. Khalil, and A. Tokmakoff, J. Chem. Phys. 113, 9893 (2000).

Krumbügel, M. A.

Lang, T.

Merchant, K. A.

K. A. Merchant, D. E. Thompson, and M. D. Fayer, Phys. Rev. Lett. 86, 3899 (2001).
[CrossRef] [PubMed]

Motzkus, M.

M. Hacker, G. Stobrawa, R. Sauerbrey, T. Buckup, M. Motzkus, M. Wildenhain, and A. Gehner, Appl. Phys. B 76, 711 (2003).
[CrossRef]

T. Lang and M. Motzkus, J. Opt. Soc. Am. B 19, 340 (2002).
[CrossRef]

Mukamel, S.

S. Mukamel, Annu. Rev. Phys. Chem. 51, 691 (2000), and references therein.

Nelson, K. A.

J. C. Vaughan, T. Feurer, and K. A. Nelson, Opt. Lett. 28, 2408 (2003).
[CrossRef] [PubMed]

J. C. Vaughan, T. Feurer, and K. A. Nelson, J. Opt. Soc. Am. B 19, 2489 (2002).
[CrossRef]

T. Crimmins, N. S. Stoyanov, and K. A. Nelson, J. Chem. Phys. 117, 2882 (2002).

Y.-X. Yan and K. A. Nelson, J. Chem. Phys. 87, 6340 (1987).

Oron, D.

D. Oron, N. Dudovich, and Y. Silberberg, J. Chem. Phys. 118, 9208 (2003), and references therein.

Pshenichnikov, M. S.

M. S. Pshenichnikov, W. P. de Boeij, and D. A. Wiersma, Phys. Rev. Lett. 76, 4701 (1996).
[CrossRef] [PubMed]

W. P. de Boeij, M. S. Pshenichnikov, and D. A. Wiersma, Chem. Phys. Lett. 238, 1 (1995).

Sauerbrey, R.

M. Hacker, G. Stobrawa, R. Sauerbrey, T. Buckup, M. Motzkus, M. Wildenhain, and A. Gehner, Appl. Phys. B 76, 711 (2003).
[CrossRef]

Silberberg, Y.

D. Oron, N. Dudovich, and Y. Silberberg, J. Chem. Phys. 118, 9208 (2003), and references therein.

Stobrawa, G.

M. Hacker, G. Stobrawa, R. Sauerbrey, T. Buckup, M. Motzkus, M. Wildenhain, and A. Gehner, Appl. Phys. B 76, 711 (2003).
[CrossRef]

Stoyanov, N. S.

T. Crimmins, N. S. Stoyanov, and K. A. Nelson, J. Chem. Phys. 117, 2882 (2002).

Suzaki, Y.

P. F. Tian, D. Keusters, Y. Suzaki, and W. S. Warren, Science 300, 1553 (2003).
[CrossRef] [PubMed]

Sweetser, J. N.

Thompson, D. E.

K. A. Merchant, D. E. Thompson, and M. D. Fayer, Phys. Rev. Lett. 86, 3899 (2001).
[CrossRef] [PubMed]

Tian, P. F.

P. F. Tian, D. Keusters, Y. Suzaki, and W. S. Warren, Science 300, 1553 (2003).
[CrossRef] [PubMed]

Tokmakoff, A.

M. Khalil, N. Demirdoven, and A. Tokmakoff, Phys. Rev. Lett. 90, 047401.1 (2003).
[CrossRef]

N. Demirdoven, M. Khalil, and A. Tokmakoff, Phys. Rev. Lett. 89, 237401.1 (2002).
[CrossRef]

O. Golonzka, N. Demirdöven, M. Khalil, and A. Tokmakoff, J. Chem. Phys. 113, 9893 (2000).

Trebino, R.

Vaughan, J. C.

Walmsley, I. A.

Warren, W. S.

P. F. Tian, D. Keusters, Y. Suzaki, and W. S. Warren, Science 300, 1553 (2003).
[CrossRef] [PubMed]

Weiner, A. M.

A. M. Weiner, Rev. Sci. Instrum. 71, 1929 (2000).
[CrossRef]

Wiersma, D. A.

M. S. Pshenichnikov, W. P. de Boeij, and D. A. Wiersma, Phys. Rev. Lett. 76, 4701 (1996).
[CrossRef] [PubMed]

W. P. de Boeij, M. S. Pshenichnikov, and D. A. Wiersma, Chem. Phys. Lett. 238, 1 (1995).

Wildenhain, M.

M. Hacker, G. Stobrawa, R. Sauerbrey, T. Buckup, M. Motzkus, M. Wildenhain, and A. Gehner, Appl. Phys. B 76, 711 (2003).
[CrossRef]

Yan, Y.-X.

Y.-X. Yan and K. A. Nelson, J. Chem. Phys. 87, 6340 (1987).

Annu. Rev. Phys. Chem. (1)

S. Mukamel, Annu. Rev. Phys. Chem. 51, 691 (2000), and references therein.

Appl. Phys. B (1)

M. Hacker, G. Stobrawa, R. Sauerbrey, T. Buckup, M. Motzkus, M. Wildenhain, and A. Gehner, Appl. Phys. B 76, 711 (2003).
[CrossRef]

Chem. Phys. Lett. (2)

W. P. de Boeij, M. S. Pshenichnikov, and D. A. Wiersma, Chem. Phys. Lett. 238, 1 (1995).

J. D. Hybl, A. W. Albrecht, S. M. Gallagher Faeder, and D. M. Jonas, Chem. Phys. Lett. 297, 307 (1998).

J. Chem. Phys. (5)

D. A. Blank, L. J. Kaufman, and G. R. Fleming, J. Chem. Phys. 113, 771 (2000).

O. Golonzka, N. Demirdöven, M. Khalil, and A. Tokmakoff, J. Chem. Phys. 113, 9893 (2000).

D. Oron, N. Dudovich, and Y. Silberberg, J. Chem. Phys. 118, 9208 (2003), and references therein.

T. Crimmins, N. S. Stoyanov, and K. A. Nelson, J. Chem. Phys. 117, 2882 (2002).

Y.-X. Yan and K. A. Nelson, J. Chem. Phys. 87, 6340 (1987).

J. Opt. Soc. Am. B (2)

Opt. Lett. (2)

Phys. Rev. Lett. (4)

M. S. Pshenichnikov, W. P. de Boeij, and D. A. Wiersma, Phys. Rev. Lett. 76, 4701 (1996).
[CrossRef] [PubMed]

K. A. Merchant, D. E. Thompson, and M. D. Fayer, Phys. Rev. Lett. 86, 3899 (2001).
[CrossRef] [PubMed]

N. Demirdoven, M. Khalil, and A. Tokmakoff, Phys. Rev. Lett. 89, 237401.1 (2002).
[CrossRef]

M. Khalil, N. Demirdoven, and A. Tokmakoff, Phys. Rev. Lett. 90, 047401.1 (2003).
[CrossRef]

Rev. Sci. Instrum. (1)

A. M. Weiner, Rev. Sci. Instrum. 71, 1929 (2000).
[CrossRef]

Science (1)

P. F. Tian, D. Keusters, Y. Suzaki, and W. S. Warren, Science 300, 1553 (2003).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Schematic illustration of the experiment. A single dispersed beam is incident on the 2D SLM (a typical 2D phase pattern is shown), which generates all the beams needed for the measurement (three beams shown) and in each beam generates pulses with the required temporal waveforms and delays. The beams are incident on the sample (with wave vectors k1,k2,k3) within which the signal field (emerging at wave vector ks) is generated. An incident beam at wave vector ks can be generated for optical heterodyning of the signal, and additional beams can be generated for higher-order or other measurements.

Fig. 2
Fig. 2

DFWM signal from phonon polaritons in LiNbO3 recorded by scanning the arrival time of (a) pulse 2 and (b) pulse 3 while keeping the other two pulses coincident at time t=0. The inset shows that the signal from (a) near time t=0 has 2.7-fs carrier oscillations of 70% modulation depth.

Fig. 3
Fig. 3

Homodyne, frequency-resolved DFWM signal from LiNbO3. (a) All pulses are FL. (b) FL pump pulses and linearly chirped probe pulse. (c) Opposite linear temporal chirp on the two pump pulses and FL probe. (d) Same as (c) but with the two pump pulses at a different temporal separation. Weak spectral fringes that become more narrowly spaced at longer times are present in all cases due to interference between the signal field and scattered excitation light that arrives at the detector at time t=0.

Fig. 4
Fig. 4

Frequency-resolved heterodyne detection of the DFWM response as a function of the reference (local oscillator) delay. (a) Antisymmetric spectral interferogram indicating that the reference pulse is π/2 out of phase with the emitted signal. (b) Application of a π phase shift to pulse 1 causes the measured spectral interferogram to shift by π relative to (a). Simulation of heterodyne-detected signal between a reference field and a second shaped electric field that is (c) π/2 phase shifted and (d) 3π/2 phase shifted.

Metrics