Abstract

Cascaded nonlinear optical interactions are analyzed for their potential to overcome quantum-defect related limitations on the efficiency of terahertz wave difference-frequency generation. The dispersion of ZnTe permits phase-matched production of a series of Stokes lines from two initial near-infrared beams. As the pump beams run down the Stokes ladder, the number of terahertz photons continually increases. A potential improvement by a factor of 5 is demonstrated in a 0.26-cm-long crystal by use of 25MW/mm2 pumps at a wavelength of 824 nm.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. B. Khurgin, A. Obeidat, S. J. Lee, and Y. J. Ding, J. Opt. Soc. Am. B 14, 1977 (1997).
    [CrossRef]
  2. R. Schiek, J. Opt. Soc. Am. B 10, 1848 (1993).
    [CrossRef]
  3. J. P. Caumes, L. Videau, C. Rouyer, and E. Freysz, Phys. Rev. Lett. 89, 047401 (2002).
    [CrossRef]
  4. E. A. Golovchenko, P. V. Mamyshev, A. N. Pilipetskii, and E. M. Dianov, J. Opt. Soc. Am. B 8, 1626 (1991).
    [CrossRef]
  5. C. Reiser, T. D. Raymond, and R. B. Michie, J. Opt. Soc. Am. B 8, 562 (1991).
    [CrossRef]
  6. S. A. Babin, D. V. Churkin, and E. V. Podivilov, Opt. Commun. 226, 329 (2003).
    [CrossRef]
  7. A. L. Y. Low, S. F. Chen, and W. M. Wong, Opt. Quantum Electron. 35, 1055 (2003).
    [CrossRef]
  8. Z. P. Chu, U. N. Singh, and T. D. Wilkerson, Appl. Opt. 30, 4350 (1991).
    [CrossRef] [PubMed]
  9. A. Ben-Bassat, A. Gordon, and B. Fischer, Ukr. J. Phys. 49, 496 (2004).
  10. A. Yariv, Quantum Electronics, 3rd ed. (Wiley, New York, 1989), pp 398–399.
  11. M. Schall, M. Walther, and P. U. Jepsen, Phys. Rev. B 64, 094301 (2001).
    [CrossRef]
  12. A. Nahata, H. Cao, and T. F. Heinz, IEEE Circuits Devices Mag. 18, 32 (2002).
    [CrossRef]
  13. W. Shi and Y. J. J. Ding, Appl. Phys. Lett. 84, 1635 (2004).
    [CrossRef]
  14. W. Shi, Y. J. J. Ding, and P. G. Schunemann, Opt. Commun. 233, 183 (2004).
    [CrossRef]
  15. L. Ward, in Handbook of Optical Constants of Solids, E. D. Palik, ed. (Academic, San Diego, Calif., 1998), Vol. II, pp. 737–758.
    [CrossRef]
  16. Sellmeier relation from Cleveland Crystals, Inc., Highland Heights, Ohio, and Department of Physics, University of Strathclyde, Strathclyde, UK; http://phys.strath.ac.uk/12-503b2/introduction/dispers/definitions.nb .
  17. G. Gallot, J. Q. Zhang, R. W. Mcgowan, T. I. Jeon, and D. Grischkowsky, Appl. Phys. Lett. 74, 3450 (1999).
    [CrossRef]
  18. T. Hattori, Y. Homma, and A. Mitsuishi, Opt. Commun. 7, 229 (2004).
    [CrossRef]
  19. R. E. Nahory and H. Y. Fan, Phys. Rev. 156, 825 (1967).
    [CrossRef]
  20. The computations reported in this Letter were performed with Mathematica software (Wolfram Research, Inc., Champaign, Ill.).
  21. T. Yuan, J. Z. Xu, and X. C. Zhang, International Workshop on Infrared Microscopy and SpectrocopyLake Tahoe, Nev., 2003.
  22. K. Kawase, M. Mizuno, S. Sohma, H. Takahashi, T. Taniuchi, Y. Urata, S. Wada, H. Tashiro, and H. Ito, Opt. Lett. 24, 1065 (1999).
    [CrossRef]

2004 (4)

A. Ben-Bassat, A. Gordon, and B. Fischer, Ukr. J. Phys. 49, 496 (2004).

W. Shi and Y. J. J. Ding, Appl. Phys. Lett. 84, 1635 (2004).
[CrossRef]

W. Shi, Y. J. J. Ding, and P. G. Schunemann, Opt. Commun. 233, 183 (2004).
[CrossRef]

T. Hattori, Y. Homma, and A. Mitsuishi, Opt. Commun. 7, 229 (2004).
[CrossRef]

2003 (2)

S. A. Babin, D. V. Churkin, and E. V. Podivilov, Opt. Commun. 226, 329 (2003).
[CrossRef]

A. L. Y. Low, S. F. Chen, and W. M. Wong, Opt. Quantum Electron. 35, 1055 (2003).
[CrossRef]

2002 (2)

J. P. Caumes, L. Videau, C. Rouyer, and E. Freysz, Phys. Rev. Lett. 89, 047401 (2002).
[CrossRef]

A. Nahata, H. Cao, and T. F. Heinz, IEEE Circuits Devices Mag. 18, 32 (2002).
[CrossRef]

2001 (1)

M. Schall, M. Walther, and P. U. Jepsen, Phys. Rev. B 64, 094301 (2001).
[CrossRef]

1999 (2)

K. Kawase, M. Mizuno, S. Sohma, H. Takahashi, T. Taniuchi, Y. Urata, S. Wada, H. Tashiro, and H. Ito, Opt. Lett. 24, 1065 (1999).
[CrossRef]

G. Gallot, J. Q. Zhang, R. W. Mcgowan, T. I. Jeon, and D. Grischkowsky, Appl. Phys. Lett. 74, 3450 (1999).
[CrossRef]

1997 (1)

1993 (1)

1991 (3)

1967 (1)

R. E. Nahory and H. Y. Fan, Phys. Rev. 156, 825 (1967).
[CrossRef]

Babin, S. A.

S. A. Babin, D. V. Churkin, and E. V. Podivilov, Opt. Commun. 226, 329 (2003).
[CrossRef]

Ben-Bassat, A.

A. Ben-Bassat, A. Gordon, and B. Fischer, Ukr. J. Phys. 49, 496 (2004).

Cao, H.

A. Nahata, H. Cao, and T. F. Heinz, IEEE Circuits Devices Mag. 18, 32 (2002).
[CrossRef]

Caumes, J. P.

J. P. Caumes, L. Videau, C. Rouyer, and E. Freysz, Phys. Rev. Lett. 89, 047401 (2002).
[CrossRef]

Chen, S. F.

A. L. Y. Low, S. F. Chen, and W. M. Wong, Opt. Quantum Electron. 35, 1055 (2003).
[CrossRef]

Chu, Z. P.

Churkin, D. V.

S. A. Babin, D. V. Churkin, and E. V. Podivilov, Opt. Commun. 226, 329 (2003).
[CrossRef]

Dianov, E. M.

Ding, Y. J.

Ding, Y. J. J.

W. Shi and Y. J. J. Ding, Appl. Phys. Lett. 84, 1635 (2004).
[CrossRef]

W. Shi, Y. J. J. Ding, and P. G. Schunemann, Opt. Commun. 233, 183 (2004).
[CrossRef]

Fan, H. Y.

R. E. Nahory and H. Y. Fan, Phys. Rev. 156, 825 (1967).
[CrossRef]

Fischer, B.

A. Ben-Bassat, A. Gordon, and B. Fischer, Ukr. J. Phys. 49, 496 (2004).

Freysz, E.

J. P. Caumes, L. Videau, C. Rouyer, and E. Freysz, Phys. Rev. Lett. 89, 047401 (2002).
[CrossRef]

Gallot, G.

G. Gallot, J. Q. Zhang, R. W. Mcgowan, T. I. Jeon, and D. Grischkowsky, Appl. Phys. Lett. 74, 3450 (1999).
[CrossRef]

Golovchenko, E. A.

Gordon, A.

A. Ben-Bassat, A. Gordon, and B. Fischer, Ukr. J. Phys. 49, 496 (2004).

Grischkowsky, D.

G. Gallot, J. Q. Zhang, R. W. Mcgowan, T. I. Jeon, and D. Grischkowsky, Appl. Phys. Lett. 74, 3450 (1999).
[CrossRef]

Hattori, T.

T. Hattori, Y. Homma, and A. Mitsuishi, Opt. Commun. 7, 229 (2004).
[CrossRef]

Heinz, T. F.

A. Nahata, H. Cao, and T. F. Heinz, IEEE Circuits Devices Mag. 18, 32 (2002).
[CrossRef]

Homma, Y.

T. Hattori, Y. Homma, and A. Mitsuishi, Opt. Commun. 7, 229 (2004).
[CrossRef]

Ito, H.

Jeon, T. I.

G. Gallot, J. Q. Zhang, R. W. Mcgowan, T. I. Jeon, and D. Grischkowsky, Appl. Phys. Lett. 74, 3450 (1999).
[CrossRef]

Jepsen, P. U.

M. Schall, M. Walther, and P. U. Jepsen, Phys. Rev. B 64, 094301 (2001).
[CrossRef]

Kawase, K.

Khurgin, J. B.

Lee, S. J.

Low, A. L. Y.

A. L. Y. Low, S. F. Chen, and W. M. Wong, Opt. Quantum Electron. 35, 1055 (2003).
[CrossRef]

Mamyshev, P. V.

Mcgowan, R. W.

G. Gallot, J. Q. Zhang, R. W. Mcgowan, T. I. Jeon, and D. Grischkowsky, Appl. Phys. Lett. 74, 3450 (1999).
[CrossRef]

Michie, R. B.

Mitsuishi, A.

T. Hattori, Y. Homma, and A. Mitsuishi, Opt. Commun. 7, 229 (2004).
[CrossRef]

Mizuno, M.

Nahata, A.

A. Nahata, H. Cao, and T. F. Heinz, IEEE Circuits Devices Mag. 18, 32 (2002).
[CrossRef]

Nahory, R. E.

R. E. Nahory and H. Y. Fan, Phys. Rev. 156, 825 (1967).
[CrossRef]

Obeidat, A.

Pilipetskii, A. N.

Podivilov, E. V.

S. A. Babin, D. V. Churkin, and E. V. Podivilov, Opt. Commun. 226, 329 (2003).
[CrossRef]

Raymond, T. D.

Reiser, C.

Rouyer, C.

J. P. Caumes, L. Videau, C. Rouyer, and E. Freysz, Phys. Rev. Lett. 89, 047401 (2002).
[CrossRef]

Schall, M.

M. Schall, M. Walther, and P. U. Jepsen, Phys. Rev. B 64, 094301 (2001).
[CrossRef]

Schiek, R.

Schunemann, P. G.

W. Shi, Y. J. J. Ding, and P. G. Schunemann, Opt. Commun. 233, 183 (2004).
[CrossRef]

Shi, W.

W. Shi, Y. J. J. Ding, and P. G. Schunemann, Opt. Commun. 233, 183 (2004).
[CrossRef]

W. Shi and Y. J. J. Ding, Appl. Phys. Lett. 84, 1635 (2004).
[CrossRef]

Singh, U. N.

Sohma, S.

Takahashi, H.

Taniuchi, T.

Tashiro, H.

Urata, Y.

Videau, L.

J. P. Caumes, L. Videau, C. Rouyer, and E. Freysz, Phys. Rev. Lett. 89, 047401 (2002).
[CrossRef]

Wada, S.

Walther, M.

M. Schall, M. Walther, and P. U. Jepsen, Phys. Rev. B 64, 094301 (2001).
[CrossRef]

Ward, L.

L. Ward, in Handbook of Optical Constants of Solids, E. D. Palik, ed. (Academic, San Diego, Calif., 1998), Vol. II, pp. 737–758.
[CrossRef]

Wilkerson, T. D.

Wong, W. M.

A. L. Y. Low, S. F. Chen, and W. M. Wong, Opt. Quantum Electron. 35, 1055 (2003).
[CrossRef]

Xu, J. Z.

T. Yuan, J. Z. Xu, and X. C. Zhang, International Workshop on Infrared Microscopy and SpectrocopyLake Tahoe, Nev., 2003.

Yariv, A.

A. Yariv, Quantum Electronics, 3rd ed. (Wiley, New York, 1989), pp 398–399.

Yuan, T.

T. Yuan, J. Z. Xu, and X. C. Zhang, International Workshop on Infrared Microscopy and SpectrocopyLake Tahoe, Nev., 2003.

Zhang, J. Q.

G. Gallot, J. Q. Zhang, R. W. Mcgowan, T. I. Jeon, and D. Grischkowsky, Appl. Phys. Lett. 74, 3450 (1999).
[CrossRef]

Zhang, X. C.

T. Yuan, J. Z. Xu, and X. C. Zhang, International Workshop on Infrared Microscopy and SpectrocopyLake Tahoe, Nev., 2003.

Appl. Opt. (1)

Appl. Phys. Lett. (2)

W. Shi and Y. J. J. Ding, Appl. Phys. Lett. 84, 1635 (2004).
[CrossRef]

G. Gallot, J. Q. Zhang, R. W. Mcgowan, T. I. Jeon, and D. Grischkowsky, Appl. Phys. Lett. 74, 3450 (1999).
[CrossRef]

IEEE Circuits Devices Mag. (1)

A. Nahata, H. Cao, and T. F. Heinz, IEEE Circuits Devices Mag. 18, 32 (2002).
[CrossRef]

J. Opt. Soc. Am. B (4)

Opt. Commun. (3)

S. A. Babin, D. V. Churkin, and E. V. Podivilov, Opt. Commun. 226, 329 (2003).
[CrossRef]

T. Hattori, Y. Homma, and A. Mitsuishi, Opt. Commun. 7, 229 (2004).
[CrossRef]

W. Shi, Y. J. J. Ding, and P. G. Schunemann, Opt. Commun. 233, 183 (2004).
[CrossRef]

Opt. Lett. (1)

Opt. Quantum Electron. (1)

A. L. Y. Low, S. F. Chen, and W. M. Wong, Opt. Quantum Electron. 35, 1055 (2003).
[CrossRef]

Phys. Rev. (1)

R. E. Nahory and H. Y. Fan, Phys. Rev. 156, 825 (1967).
[CrossRef]

Phys. Rev. B (1)

M. Schall, M. Walther, and P. U. Jepsen, Phys. Rev. B 64, 094301 (2001).
[CrossRef]

Phys. Rev. Lett. (1)

J. P. Caumes, L. Videau, C. Rouyer, and E. Freysz, Phys. Rev. Lett. 89, 047401 (2002).
[CrossRef]

Ukr. J. Phys. (1)

A. Ben-Bassat, A. Gordon, and B. Fischer, Ukr. J. Phys. 49, 496 (2004).

Other (5)

A. Yariv, Quantum Electronics, 3rd ed. (Wiley, New York, 1989), pp 398–399.

The computations reported in this Letter were performed with Mathematica software (Wolfram Research, Inc., Champaign, Ill.).

T. Yuan, J. Z. Xu, and X. C. Zhang, International Workshop on Infrared Microscopy and SpectrocopyLake Tahoe, Nev., 2003.

L. Ward, in Handbook of Optical Constants of Solids, E. D. Palik, ed. (Academic, San Diego, Calif., 1998), Vol. II, pp. 737–758.
[CrossRef]

Sellmeier relation from Cleveland Crystals, Inc., Highland Heights, Ohio, and Department of Physics, University of Strathclyde, Strathclyde, UK; http://phys.strath.ac.uk/12-503b2/introduction/dispers/definitions.nb .

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Wave-number mismatch for a cascade ladder in ZnTe for generation of 0.5-THz (squares) and 1.0-THz (diamonds) waves.

Fig. 2
Fig. 2

Ratio of flux of output THz photons to input flux of pump photons versus frequency of lower input pump at the optimum interaction length for each pump frequency. The input intensity of each pump is 25 MW/mm2, corresponding to 25-mJ Q-switched 1-ns pulses in a beam with a 1mm2 cross section. Solid curve, the result including cascade; dashed curve, the result when cascading is ignored.

Fig. 3
Fig. 3

Surface plot showing development of Stokes and lower-power anti-Stokes cascades for generation of 1-THz radiation in ZnTe. Physical parameters as in Fig. 2.

Fig. 4
Fig. 4

Photon flux of the output THz beam versus interaction length. Solid curve, no cascading; dashed curve, including cascading, absorption, and phase mismatch; dotted curve, including cascading but no phase mismatch and no absorption. The input intensity of the pumps is as in Fig. 2.

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

ω1-ω-1=ωT.
ηmax=ωTω1+ω-110121014=1%.
Ejz,t=12Ejzexpiωjt-kjz+Ej*zexp-iωjt-kjz,
dATdz=-αT2AT-iκ2mm=-A2m+1A2m-1*×exp-iΔk2mz,
dAjdz=-αj2Aj-iκj+1Aj+2AT* exp-iΔkj+1z+κj-1Aj-2AT exp+iΔkj-1z  j odd
Aj=njωjEj.
Δkj=kj+1-kj-1-kT,
κj=dj,Tμ00ωj+1ωj-1ωTnj+1nj-1nT1/2.
Fj=Aj220μ0.
nλ=A+Bλ2λ2-C1/2,
AT=-iκA10A-1*0exp-αz-exp-αTz/2αT/2-α.

Metrics