Abstract

We have used a novel phase-referenced heterodyne dual-beam low-coherence interferometer to perform what we believe are the first noncontact measurements of surface motion in a nerve bundle during the action potential. Nerve displacements of 5-nm amplitude and 10-ms duration are measured without signal averaging. This interferometer may find general application in measurement of small motion in cells and other weakly scattering samples.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. Iwasa, I. Tasaki, and R. C. Gibbons, Science 210, 338 (1980).
    [CrossRef] [PubMed]
  2. I. Tasaki, Physiol. Chem. Phys. Med. NMR 20, 251 (1998).
  3. R. Sandlin, L. Lerman, W. Barry, and I. Tasaki, Nature 217, 575 (1968).
    [CrossRef] [PubMed]
  4. D. Kleinfeld and A. LaPorta, in Light Scattering Imaging of Neural Tissue Function, D. M. Rector and J. S. George, eds. (Humana, Totowa, N.J., to be published).
  5. L. E. Drain, The Laser Doppler Technique (Wiley, New York, 1980).
  6. P. K. Rastogi, Digital Speckle Pattern Interferometry and Related Techniques (Wiley, Chichester, U.K., 2001).
  7. K. Otsuka, K. Abe, J. Ko, and T. Lim, Opt. Lett. 27, 1339 (2002).
    [CrossRef]
  8. C. Yang, A. Wax, M. S. Hahn, K. Badizadegan, R. R. Dasari, and M. S. Feld, Opt. Lett. 26, 1271 (2001).
    [CrossRef]
  9. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, Science 254, 1178 (1991).
    [CrossRef] [PubMed]
  10. A. Watanabe, J. Physiol. 389, 223 (1987).
    [PubMed]
  11. P. Zhang, A. M. Keleshian, and F. Sachs, Nature 413, 428 (2001).
    [CrossRef] [PubMed]

2002

2001

1998

I. Tasaki, Physiol. Chem. Phys. Med. NMR 20, 251 (1998).

1991

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, Science 254, 1178 (1991).
[CrossRef] [PubMed]

1987

A. Watanabe, J. Physiol. 389, 223 (1987).
[PubMed]

1980

K. Iwasa, I. Tasaki, and R. C. Gibbons, Science 210, 338 (1980).
[CrossRef] [PubMed]

1968

R. Sandlin, L. Lerman, W. Barry, and I. Tasaki, Nature 217, 575 (1968).
[CrossRef] [PubMed]

Abe, K.

Badizadegan, K.

Barry, W.

R. Sandlin, L. Lerman, W. Barry, and I. Tasaki, Nature 217, 575 (1968).
[CrossRef] [PubMed]

Chang, W.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, Science 254, 1178 (1991).
[CrossRef] [PubMed]

Dasari, R. R.

Drain, L. E.

L. E. Drain, The Laser Doppler Technique (Wiley, New York, 1980).

Feld, M. S.

Flotte, T.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, Science 254, 1178 (1991).
[CrossRef] [PubMed]

Fujimoto, J. G.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, Science 254, 1178 (1991).
[CrossRef] [PubMed]

Gibbons, R. C.

K. Iwasa, I. Tasaki, and R. C. Gibbons, Science 210, 338 (1980).
[CrossRef] [PubMed]

Gregory, K.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, Science 254, 1178 (1991).
[CrossRef] [PubMed]

Hahn, M. S.

Hee, M. R.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, Science 254, 1178 (1991).
[CrossRef] [PubMed]

Huang, D.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, Science 254, 1178 (1991).
[CrossRef] [PubMed]

Iwasa, K.

K. Iwasa, I. Tasaki, and R. C. Gibbons, Science 210, 338 (1980).
[CrossRef] [PubMed]

Keleshian, A. M.

P. Zhang, A. M. Keleshian, and F. Sachs, Nature 413, 428 (2001).
[CrossRef] [PubMed]

Kleinfeld, D.

D. Kleinfeld and A. LaPorta, in Light Scattering Imaging of Neural Tissue Function, D. M. Rector and J. S. George, eds. (Humana, Totowa, N.J., to be published).

Ko, J.

LaPorta, A.

D. Kleinfeld and A. LaPorta, in Light Scattering Imaging of Neural Tissue Function, D. M. Rector and J. S. George, eds. (Humana, Totowa, N.J., to be published).

Lerman, L.

R. Sandlin, L. Lerman, W. Barry, and I. Tasaki, Nature 217, 575 (1968).
[CrossRef] [PubMed]

Lim, T.

Lin, C. P.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, Science 254, 1178 (1991).
[CrossRef] [PubMed]

Otsuka, K.

Puliafito, C. A.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, Science 254, 1178 (1991).
[CrossRef] [PubMed]

Rastogi, P. K.

P. K. Rastogi, Digital Speckle Pattern Interferometry and Related Techniques (Wiley, Chichester, U.K., 2001).

Sachs, F.

P. Zhang, A. M. Keleshian, and F. Sachs, Nature 413, 428 (2001).
[CrossRef] [PubMed]

Sandlin, R.

R. Sandlin, L. Lerman, W. Barry, and I. Tasaki, Nature 217, 575 (1968).
[CrossRef] [PubMed]

Schuman, J. S.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, Science 254, 1178 (1991).
[CrossRef] [PubMed]

Stinson, W. G.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, Science 254, 1178 (1991).
[CrossRef] [PubMed]

Swanson, E. A.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, Science 254, 1178 (1991).
[CrossRef] [PubMed]

Tasaki, I.

I. Tasaki, Physiol. Chem. Phys. Med. NMR 20, 251 (1998).

K. Iwasa, I. Tasaki, and R. C. Gibbons, Science 210, 338 (1980).
[CrossRef] [PubMed]

R. Sandlin, L. Lerman, W. Barry, and I. Tasaki, Nature 217, 575 (1968).
[CrossRef] [PubMed]

Watanabe, A.

A. Watanabe, J. Physiol. 389, 223 (1987).
[PubMed]

Wax, A.

Yang, C.

Zhang, P.

P. Zhang, A. M. Keleshian, and F. Sachs, Nature 413, 428 (2001).
[CrossRef] [PubMed]

J. Physiol.

A. Watanabe, J. Physiol. 389, 223 (1987).
[PubMed]

Nature

P. Zhang, A. M. Keleshian, and F. Sachs, Nature 413, 428 (2001).
[CrossRef] [PubMed]

R. Sandlin, L. Lerman, W. Barry, and I. Tasaki, Nature 217, 575 (1968).
[CrossRef] [PubMed]

Opt. Lett.

Physiol. Chem. Phys. Med. NMR

I. Tasaki, Physiol. Chem. Phys. Med. NMR 20, 251 (1998).

Science

K. Iwasa, I. Tasaki, and R. C. Gibbons, Science 210, 338 (1980).
[CrossRef] [PubMed]

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, Science 254, 1178 (1991).
[CrossRef] [PubMed]

Other

D. Kleinfeld and A. LaPorta, in Light Scattering Imaging of Neural Tissue Function, D. M. Rector and J. S. George, eds. (Humana, Totowa, N.J., to be published).

L. E. Drain, The Laser Doppler Technique (Wiley, New York, 1980).

P. K. Rastogi, Digital Speckle Pattern Interferometry and Related Techniques (Wiley, Chichester, U.K., 2001).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Interferometer design. Dashed box, Michelson interferometer. SLD, superluminescent diode; AOM1, AOM2, acousto-optic modulators; M1, M2, mirrors; C1–C3, optical circulators; BS, beam splitter; PD1, PD2, InGaAs photodetectors; HeNe, guide laser; WDM, wavelength-division multiplexer; 1’s and 2’s, surfaces of the sample and of the reference gap, described in text.

Fig. 2
Fig. 2

Nerve chamber setup.

Fig. 3
Fig. 3

Nerve displacement and electrical potential. Single-shot measurements (no signal averaging). Stimulus current for this trial, 4 mA. Displacement signal low-pass filtered at 1 kHz. Positive displacements correspond to an increase in the height of the nerve surface. A linear component with a negative slope of 300 nm/s, which most likely was due to nerve drying, was subtracted from the displacement signal.

Fig. 4
Fig. 4

Peak electrical potential (crosses) and nerve displacements (circles) for a single nerve, with variable-stimulus current amplitude. Data in Figs. 3 and 4 are not from the same nerve.

Metrics