Abstract

Under certain conditions, multiframe image sequences can be processed to produce images that achieve greater resolution through image registration and increased sampling. This technique, known as supersampling, takes advantage of the spatiotemporal data available in an undersampled imaging sequence. In this effort the image registration is replaced by application of a fast blind-deconvolution technique to remove the motion blur in the upsampled average of the image sequence. This method produces a supersampled image with significantly decreased computational requirements compared with common methods. The method and simulated test results are presented.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Elad and Y. Hel-Or, IEEE Trans. Image Process. 10, 1187 (2001).
    [CrossRef]
  2. S. Borman and R. L. Stevenson, in Proceedings of the 1998 Midwest Symposium on Circuits and Systems (Institute of Electrical and Electronics Engineers, New York, 1998), pp. 374–378.
  3. D. R. Gerwe and D. J. Lee, Opt. Eng. 41, 2238 (2002).
    [CrossRef]
  4. J. M. Schuler and D. A. Scribner, Opt. Eng. 38, 801 (1999).
    [CrossRef]
  5. J. N. Caron, N. M. Namazi, and C. J. Rollins, Appl. Opt. 41, 6884 (2002).
    [CrossRef] [PubMed]
  6. J. N. Caron, N. M. Namazi, R. L. Lucke, C. J. Rollins, and P. R. Lynn, Opt. Lett. 26, 1164 (2001).
    [CrossRef]
  7. J. N. Caron, “Signal processing using the self-deconvolving data reconstruction algorithm,” U.S. patent (February15, 2001).
  8. A. K. Jain, Fundamentals of Digital Image Processing (Prentice-Hall, Englewood Cliffs, N.J., 1989).
  9. N. Weiner, The Extrapolation, Interpolation, and Smoothing of Stationary Time Serves with Engineering Applications (Wiley, New York, 1949).
  10. C. W. Helstrom, J. Opt. Soc. Am. 57, 297 (1967).
  11. D. Slepian, J. Opt. Soc. Am. 57, 918 (1967).
  12. G. R. Ayers and J. C. Dainty, Opt. Lett. 13, 547 (1988).
    [CrossRef]
  13. D. G. Sheppard, B. R. Hunt, and M. W. Marcellin, J. Opt. Soc. Am. A 15, 978 (1998).
    [CrossRef]
  14. D. Kundur and D. Hatzinakos, IEEE Trans. Signal Process. 46, 375 (1998).
    [CrossRef]
  15. T. J. Holmes, J. Opt. Soc. Am. A 9, 1052 (1992).
    [CrossRef] [PubMed]
  16. T. J. Schulz, J. Opt. Soc. Am. A 10, 1064 (1993).
    [CrossRef]
  17. A. S. Carasso, SIAM (Soc. Ind. Appl. Math.) J. Appl. Math. 61, 1980 (2001).
    [CrossRef]

2002 (2)

2001 (3)

M. Elad and Y. Hel-Or, IEEE Trans. Image Process. 10, 1187 (2001).
[CrossRef]

J. N. Caron, N. M. Namazi, R. L. Lucke, C. J. Rollins, and P. R. Lynn, Opt. Lett. 26, 1164 (2001).
[CrossRef]

A. S. Carasso, SIAM (Soc. Ind. Appl. Math.) J. Appl. Math. 61, 1980 (2001).
[CrossRef]

1999 (1)

J. M. Schuler and D. A. Scribner, Opt. Eng. 38, 801 (1999).
[CrossRef]

1998 (2)

D. G. Sheppard, B. R. Hunt, and M. W. Marcellin, J. Opt. Soc. Am. A 15, 978 (1998).
[CrossRef]

D. Kundur and D. Hatzinakos, IEEE Trans. Signal Process. 46, 375 (1998).
[CrossRef]

1993 (1)

1992 (1)

1988 (1)

1967 (2)

Ayers, G. R.

Borman, S.

S. Borman and R. L. Stevenson, in Proceedings of the 1998 Midwest Symposium on Circuits and Systems (Institute of Electrical and Electronics Engineers, New York, 1998), pp. 374–378.

Carasso, A. S.

A. S. Carasso, SIAM (Soc. Ind. Appl. Math.) J. Appl. Math. 61, 1980 (2001).
[CrossRef]

Caron, J. N.

Dainty, J. C.

Elad, M.

M. Elad and Y. Hel-Or, IEEE Trans. Image Process. 10, 1187 (2001).
[CrossRef]

Gerwe, D. R.

D. R. Gerwe and D. J. Lee, Opt. Eng. 41, 2238 (2002).
[CrossRef]

Hatzinakos, D.

D. Kundur and D. Hatzinakos, IEEE Trans. Signal Process. 46, 375 (1998).
[CrossRef]

Hel-Or, Y.

M. Elad and Y. Hel-Or, IEEE Trans. Image Process. 10, 1187 (2001).
[CrossRef]

Helstrom, C. W.

Holmes, T. J.

Hunt, B. R.

Jain, A. K.

A. K. Jain, Fundamentals of Digital Image Processing (Prentice-Hall, Englewood Cliffs, N.J., 1989).

Kundur, D.

D. Kundur and D. Hatzinakos, IEEE Trans. Signal Process. 46, 375 (1998).
[CrossRef]

Lee, D. J.

D. R. Gerwe and D. J. Lee, Opt. Eng. 41, 2238 (2002).
[CrossRef]

Lucke, R. L.

Lynn, P. R.

Marcellin, M. W.

Namazi, N. M.

Rollins, C. J.

Schuler, J. M.

J. M. Schuler and D. A. Scribner, Opt. Eng. 38, 801 (1999).
[CrossRef]

Schulz, T. J.

Scribner, D. A.

J. M. Schuler and D. A. Scribner, Opt. Eng. 38, 801 (1999).
[CrossRef]

Sheppard, D. G.

Slepian, D.

Stevenson, R. L.

S. Borman and R. L. Stevenson, in Proceedings of the 1998 Midwest Symposium on Circuits and Systems (Institute of Electrical and Electronics Engineers, New York, 1998), pp. 374–378.

Weiner, N.

N. Weiner, The Extrapolation, Interpolation, and Smoothing of Stationary Time Serves with Engineering Applications (Wiley, New York, 1949).

Appl. Opt. (1)

IEEE Trans. Image Process. (1)

M. Elad and Y. Hel-Or, IEEE Trans. Image Process. 10, 1187 (2001).
[CrossRef]

IEEE Trans. Signal Process. (1)

D. Kundur and D. Hatzinakos, IEEE Trans. Signal Process. 46, 375 (1998).
[CrossRef]

J. Opt. Soc. Am. (2)

J. Opt. Soc. Am. A (3)

Opt. Eng. (2)

D. R. Gerwe and D. J. Lee, Opt. Eng. 41, 2238 (2002).
[CrossRef]

J. M. Schuler and D. A. Scribner, Opt. Eng. 38, 801 (1999).
[CrossRef]

Opt. Lett. (2)

SIAM (Soc. Ind. Appl. Math.) J. Appl. Math. (1)

A. S. Carasso, SIAM (Soc. Ind. Appl. Math.) J. Appl. Math. 61, 1980 (2001).
[CrossRef]

Other (4)

J. N. Caron, “Signal processing using the self-deconvolving data reconstruction algorithm,” U.S. patent (February15, 2001).

A. K. Jain, Fundamentals of Digital Image Processing (Prentice-Hall, Englewood Cliffs, N.J., 1989).

N. Weiner, The Extrapolation, Interpolation, and Smoothing of Stationary Time Serves with Engineering Applications (Wiley, New York, 1949).

S. Borman and R. L. Stevenson, in Proceedings of the 1998 Midwest Symposium on Circuits and Systems (Institute of Electrical and Electronics Engineers, New York, 1998), pp. 374–378.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

(Left) Left side of the original or truth image used in the simulation. This is an aerial view of Norfolk, Virginia, taken by the Ikonos satellite. (Right) Right side of the average of 16 translated frames upsampled to the final sampling frequency.

Fig. 2
Fig. 2

Fully processed image produced by applying a blind deconvolution to the averaged image.

Fig. 3
Fig. 3

Portion of the image for each step of the supersampling process. (a) Truth image. (b) Single frame of the multiframe sequence at the lower sampling frequency. (c) Average of the translated frames at the final sampling frequency. (d) Result of the blind deconvolution process.

Fig. 4
Fig. 4

Comparison of two supersampling techniques. (a) Supersampling with blind deconvolution. (b) Supersampling with a phase correlation method. (c) Application of an edge filter to (b). (d) Application of blind deconvolution to (b).

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

Gu,v=Fu,vDu,v+Wu,v,
Fu,vGu,vD*u,vDu,v2+C2,
Du,v=KGSGu,v-Wu,vαu,v,
αu,vlnKGSGu,v-Wu,v-lnKFSFu,vlnKGSGu,v-Wu,v,
KFSFu,vKFSFu,v.

Metrics