Abstract

We show that a polymer tip, integrated by free-radical photopolymerization at the end of a telecommunication optical fiber, allows high-efficiency coupling between the fiber and an infrared laser diode. A coupling efficiency of 70% (1.5-dB loss) was achieved. We obtained this result by controlling the radius of curvature of the tip, the origin of which is discussed in terms of the photochemical influence of oxygen during tip formation. The experimental data were found to be in agreement with results of electromagnetic calculations based on the finite-element method.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Kato, J. Appl. Phys. 44, 2756 (1973).
    [CrossRef]
  2. H. M. Presby, A. F. Benner, and C. A. Edwards, Appl. Opt. 29, 2692 (1990).
    [CrossRef] [PubMed]
  3. G. Eisenstein and D. Vitello, Appl. Opt. 21, 3470 (1982).
    [CrossRef] [PubMed]
  4. R. Bachelot, C. Ecoffet, D. Deloeil, P. Royer, and D. J. Lougnot, Appl. Opt. 40, 1560 (2001).
    [CrossRef]
  5. C. Ecoffet, A. Espanet, and D. J. Lougnot, Adv. Mater. 10, 411 (1998).
    [CrossRef]
  6. A. Espanet, C. Ecoffet, and D. J. Lougnot, J. Polym. Sci. Part A Polym. Chem. 3, 2075 (1999).
  7. M. Hocine, R. Bachelot, C. Ecoffet, N. Fressengeas, P. Royer, and G. Kugel, Synth. Met. 127, 313 (2002).
    [CrossRef]
  8. J. Jin, The Finite Element Method in Electromagnetism (Wiley, New York, 1993).
  9. R. Fikri, D. Barchiesi, F. H’Dhili, R. Bachelot, A. Vial, and P. Royer, Opt. Commun. 221, 13 (2003).
    [CrossRef]

2003

R. Fikri, D. Barchiesi, F. H’Dhili, R. Bachelot, A. Vial, and P. Royer, Opt. Commun. 221, 13 (2003).
[CrossRef]

2002

M. Hocine, R. Bachelot, C. Ecoffet, N. Fressengeas, P. Royer, and G. Kugel, Synth. Met. 127, 313 (2002).
[CrossRef]

2001

R. Bachelot, C. Ecoffet, D. Deloeil, P. Royer, and D. J. Lougnot, Appl. Opt. 40, 1560 (2001).
[CrossRef]

1999

A. Espanet, C. Ecoffet, and D. J. Lougnot, J. Polym. Sci. Part A Polym. Chem. 3, 2075 (1999).

1998

C. Ecoffet, A. Espanet, and D. J. Lougnot, Adv. Mater. 10, 411 (1998).
[CrossRef]

1990

1982

1973

D. Kato, J. Appl. Phys. 44, 2756 (1973).
[CrossRef]

Bachelot, R.

R. Fikri, D. Barchiesi, F. H’Dhili, R. Bachelot, A. Vial, and P. Royer, Opt. Commun. 221, 13 (2003).
[CrossRef]

M. Hocine, R. Bachelot, C. Ecoffet, N. Fressengeas, P. Royer, and G. Kugel, Synth. Met. 127, 313 (2002).
[CrossRef]

R. Bachelot, C. Ecoffet, D. Deloeil, P. Royer, and D. J. Lougnot, Appl. Opt. 40, 1560 (2001).
[CrossRef]

Barchiesi, D.

R. Fikri, D. Barchiesi, F. H’Dhili, R. Bachelot, A. Vial, and P. Royer, Opt. Commun. 221, 13 (2003).
[CrossRef]

Benner, A. F.

Deloeil, D.

R. Bachelot, C. Ecoffet, D. Deloeil, P. Royer, and D. J. Lougnot, Appl. Opt. 40, 1560 (2001).
[CrossRef]

Ecoffet, C.

M. Hocine, R. Bachelot, C. Ecoffet, N. Fressengeas, P. Royer, and G. Kugel, Synth. Met. 127, 313 (2002).
[CrossRef]

R. Bachelot, C. Ecoffet, D. Deloeil, P. Royer, and D. J. Lougnot, Appl. Opt. 40, 1560 (2001).
[CrossRef]

A. Espanet, C. Ecoffet, and D. J. Lougnot, J. Polym. Sci. Part A Polym. Chem. 3, 2075 (1999).

C. Ecoffet, A. Espanet, and D. J. Lougnot, Adv. Mater. 10, 411 (1998).
[CrossRef]

Edwards, C. A.

Eisenstein, G.

Espanet, A.

A. Espanet, C. Ecoffet, and D. J. Lougnot, J. Polym. Sci. Part A Polym. Chem. 3, 2075 (1999).

C. Ecoffet, A. Espanet, and D. J. Lougnot, Adv. Mater. 10, 411 (1998).
[CrossRef]

Fikri, R.

R. Fikri, D. Barchiesi, F. H’Dhili, R. Bachelot, A. Vial, and P. Royer, Opt. Commun. 221, 13 (2003).
[CrossRef]

Fressengeas, N.

M. Hocine, R. Bachelot, C. Ecoffet, N. Fressengeas, P. Royer, and G. Kugel, Synth. Met. 127, 313 (2002).
[CrossRef]

H’Dhili, F.

R. Fikri, D. Barchiesi, F. H’Dhili, R. Bachelot, A. Vial, and P. Royer, Opt. Commun. 221, 13 (2003).
[CrossRef]

Hocine, M.

M. Hocine, R. Bachelot, C. Ecoffet, N. Fressengeas, P. Royer, and G. Kugel, Synth. Met. 127, 313 (2002).
[CrossRef]

Jin, J.

J. Jin, The Finite Element Method in Electromagnetism (Wiley, New York, 1993).

Kato, D.

D. Kato, J. Appl. Phys. 44, 2756 (1973).
[CrossRef]

Kugel, G.

M. Hocine, R. Bachelot, C. Ecoffet, N. Fressengeas, P. Royer, and G. Kugel, Synth. Met. 127, 313 (2002).
[CrossRef]

Lougnot, D. J.

R. Bachelot, C. Ecoffet, D. Deloeil, P. Royer, and D. J. Lougnot, Appl. Opt. 40, 1560 (2001).
[CrossRef]

A. Espanet, C. Ecoffet, and D. J. Lougnot, J. Polym. Sci. Part A Polym. Chem. 3, 2075 (1999).

C. Ecoffet, A. Espanet, and D. J. Lougnot, Adv. Mater. 10, 411 (1998).
[CrossRef]

Presby, H. M.

Royer, P.

R. Fikri, D. Barchiesi, F. H’Dhili, R. Bachelot, A. Vial, and P. Royer, Opt. Commun. 221, 13 (2003).
[CrossRef]

M. Hocine, R. Bachelot, C. Ecoffet, N. Fressengeas, P. Royer, and G. Kugel, Synth. Met. 127, 313 (2002).
[CrossRef]

R. Bachelot, C. Ecoffet, D. Deloeil, P. Royer, and D. J. Lougnot, Appl. Opt. 40, 1560 (2001).
[CrossRef]

Vial, A.

R. Fikri, D. Barchiesi, F. H’Dhili, R. Bachelot, A. Vial, and P. Royer, Opt. Commun. 221, 13 (2003).
[CrossRef]

Vitello, D.

Adv. Mater.

C. Ecoffet, A. Espanet, and D. J. Lougnot, Adv. Mater. 10, 411 (1998).
[CrossRef]

Appl. Opt.

J. Appl. Phys.

D. Kato, J. Appl. Phys. 44, 2756 (1973).
[CrossRef]

J. Polym. Sci. Part A Polym. Chem.

A. Espanet, C. Ecoffet, and D. J. Lougnot, J. Polym. Sci. Part A Polym. Chem. 3, 2075 (1999).

Opt. Commun.

R. Fikri, D. Barchiesi, F. H’Dhili, R. Bachelot, A. Vial, and P. Royer, Opt. Commun. 221, 13 (2003).
[CrossRef]

Synth. Met.

M. Hocine, R. Bachelot, C. Ecoffet, N. Fressengeas, P. Royer, and G. Kugel, Synth. Met. 127, 313 (2002).
[CrossRef]

Other

J. Jin, The Finite Element Method in Electromagnetism (Wiley, New York, 1993).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Polymer tips integrated into the end of a 3µm-core optical fiber. (a) SEM image: cleaved fiber surface (diameter 125 µm) and a polymer tip whose base coincides with the fiber core. (b) SEM image showing the radius of curvature 3 µm of the tip end.

Fig. 2
Fig. 2

Polymer tips integrated at the extremity of a 9µm-core optical fiber for telecommunications. (a) SEM image showing a 20µm-long four-peak tip obtained from the LP21 mode fiber. (b) SEM image showing a 15µm-long single peak obtained from the LP01 mode fiber. (c) ROC of the extremity of the single-peak tip versus exposure time.

Fig. 3
Fig. 3

Laser–fiber coupling power P. (a) Experimental arrangement, (b) tipped fiber, (c) bare fiber, (d) maximum achieved P versus the ROC of the tip.

Fig. 4
Fig. 4

Calculation based on the FEM. (a) Example of the mesh used. (b) Example of the calculated intensity of the electric field in the vicinity of the tip as a Gaussian beam λ=1310 nm is launched into the fiber. (c), (d) The optical source is the emitting LD placed beneath the tip. (c) Coupling power as a function of the tipped-fiber–LD distance. (d) Coupling power as a function of the bare fiber–LD distance.

Metrics