Abstract

Spectral line narrowing (by a factor of 8) and stabilization of the emission wavelength (by a factor of 30) of multimode high-power laser diodes and arrays is demonstrated by use of volume Bragg gratings fabricated in high-stability inorganic photorefractive glasses. Applications include stabilization of pump laser diodes and arrays for solid-state lasers and metal-vapor lasers, spin hyperpolarization of noble gases used in medical imaging, and others.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. B. F. Ventrudo, G. A. Rogers, G. S. Lick, D. Hargreaves, and T. N. Demayo, Electron. Lett. 30, 2147 (1994).
    [CrossRef]
  2. A. Mugino, T. Kimura, Y. Irie, and T. Shimizu, in Optical Fiber Communications Conference (OFC) (Optical Society of America, Washington, D.C., 1999), p. 29.
  3. M. Achtenhagen, S. Mohrdiek, T. Pliska, N. Matuschek, C. S. Harder, and A. Hardy, IEEE Photon. Technol. Lett. 13, 415 (2001).
    [CrossRef]
  4. I. A. Nelson, B. Chann, and T. G. Walker, Appl. Phys. Lett. 76, 1356 (2000).
    [CrossRef]
  5. B. Chann, I. A. Nelson, and T. G. Walker, Opt. Lett. 25, 1352 (2000).
    [CrossRef]
  6. S. B. Bayram and T. E. Chupp, Rev. Sci. Instrum. 73, 4169 (2002).
    [CrossRef]
  7. C. J. Cuneo, J. J. Maki, and D. H. McIntyre, Appl. Phys. Lett. 64, 2625 (1994).
    [CrossRef]
  8. K. Petermann, Laser Diode Modulation and Noise (Kluwer Academic, Dordrecht, The Netherlands, 1988).
    [CrossRef]
  9. S. D. Stookey, G. H. Beall, and J. E. Pierson, J. Appl. Phys. 49, 5114 (1978).
    [CrossRef]
  10. O. M. Efimov, L. B. Glebov, L. N. Glebova, K. C. Richardson, and V. I. Smirnov, Appl. Opt. 38, 619 (1999).
    [CrossRef]
  11. H. Kogelnik, Bell Syst. Tech. J. 48, 2909 (1969).
    [CrossRef]

2002

S. B. Bayram and T. E. Chupp, Rev. Sci. Instrum. 73, 4169 (2002).
[CrossRef]

2001

M. Achtenhagen, S. Mohrdiek, T. Pliska, N. Matuschek, C. S. Harder, and A. Hardy, IEEE Photon. Technol. Lett. 13, 415 (2001).
[CrossRef]

2000

I. A. Nelson, B. Chann, and T. G. Walker, Appl. Phys. Lett. 76, 1356 (2000).
[CrossRef]

B. Chann, I. A. Nelson, and T. G. Walker, Opt. Lett. 25, 1352 (2000).
[CrossRef]

1999

1994

B. F. Ventrudo, G. A. Rogers, G. S. Lick, D. Hargreaves, and T. N. Demayo, Electron. Lett. 30, 2147 (1994).
[CrossRef]

C. J. Cuneo, J. J. Maki, and D. H. McIntyre, Appl. Phys. Lett. 64, 2625 (1994).
[CrossRef]

1978

S. D. Stookey, G. H. Beall, and J. E. Pierson, J. Appl. Phys. 49, 5114 (1978).
[CrossRef]

1969

H. Kogelnik, Bell Syst. Tech. J. 48, 2909 (1969).
[CrossRef]

Achtenhagen, M.

M. Achtenhagen, S. Mohrdiek, T. Pliska, N. Matuschek, C. S. Harder, and A. Hardy, IEEE Photon. Technol. Lett. 13, 415 (2001).
[CrossRef]

Bayram, S. B.

S. B. Bayram and T. E. Chupp, Rev. Sci. Instrum. 73, 4169 (2002).
[CrossRef]

Beall, G. H.

S. D. Stookey, G. H. Beall, and J. E. Pierson, J. Appl. Phys. 49, 5114 (1978).
[CrossRef]

Chann, B.

B. Chann, I. A. Nelson, and T. G. Walker, Opt. Lett. 25, 1352 (2000).
[CrossRef]

I. A. Nelson, B. Chann, and T. G. Walker, Appl. Phys. Lett. 76, 1356 (2000).
[CrossRef]

Chupp, T. E.

S. B. Bayram and T. E. Chupp, Rev. Sci. Instrum. 73, 4169 (2002).
[CrossRef]

Cuneo, C. J.

C. J. Cuneo, J. J. Maki, and D. H. McIntyre, Appl. Phys. Lett. 64, 2625 (1994).
[CrossRef]

Demayo, T. N.

B. F. Ventrudo, G. A. Rogers, G. S. Lick, D. Hargreaves, and T. N. Demayo, Electron. Lett. 30, 2147 (1994).
[CrossRef]

Efimov, O. M.

Glebov, L. B.

Glebova, L. N.

Harder, C. S.

M. Achtenhagen, S. Mohrdiek, T. Pliska, N. Matuschek, C. S. Harder, and A. Hardy, IEEE Photon. Technol. Lett. 13, 415 (2001).
[CrossRef]

Hardy, A.

M. Achtenhagen, S. Mohrdiek, T. Pliska, N. Matuschek, C. S. Harder, and A. Hardy, IEEE Photon. Technol. Lett. 13, 415 (2001).
[CrossRef]

Hargreaves, D.

B. F. Ventrudo, G. A. Rogers, G. S. Lick, D. Hargreaves, and T. N. Demayo, Electron. Lett. 30, 2147 (1994).
[CrossRef]

Irie, Y.

A. Mugino, T. Kimura, Y. Irie, and T. Shimizu, in Optical Fiber Communications Conference (OFC) (Optical Society of America, Washington, D.C., 1999), p. 29.

Kimura, T.

A. Mugino, T. Kimura, Y. Irie, and T. Shimizu, in Optical Fiber Communications Conference (OFC) (Optical Society of America, Washington, D.C., 1999), p. 29.

Kogelnik, H.

H. Kogelnik, Bell Syst. Tech. J. 48, 2909 (1969).
[CrossRef]

Lick, G. S.

B. F. Ventrudo, G. A. Rogers, G. S. Lick, D. Hargreaves, and T. N. Demayo, Electron. Lett. 30, 2147 (1994).
[CrossRef]

Maki, J. J.

C. J. Cuneo, J. J. Maki, and D. H. McIntyre, Appl. Phys. Lett. 64, 2625 (1994).
[CrossRef]

Matuschek, N.

M. Achtenhagen, S. Mohrdiek, T. Pliska, N. Matuschek, C. S. Harder, and A. Hardy, IEEE Photon. Technol. Lett. 13, 415 (2001).
[CrossRef]

McIntyre, D. H.

C. J. Cuneo, J. J. Maki, and D. H. McIntyre, Appl. Phys. Lett. 64, 2625 (1994).
[CrossRef]

Mohrdiek, S.

M. Achtenhagen, S. Mohrdiek, T. Pliska, N. Matuschek, C. S. Harder, and A. Hardy, IEEE Photon. Technol. Lett. 13, 415 (2001).
[CrossRef]

Mugino, A.

A. Mugino, T. Kimura, Y. Irie, and T. Shimizu, in Optical Fiber Communications Conference (OFC) (Optical Society of America, Washington, D.C., 1999), p. 29.

Nelson, I. A.

I. A. Nelson, B. Chann, and T. G. Walker, Appl. Phys. Lett. 76, 1356 (2000).
[CrossRef]

B. Chann, I. A. Nelson, and T. G. Walker, Opt. Lett. 25, 1352 (2000).
[CrossRef]

Petermann, K.

K. Petermann, Laser Diode Modulation and Noise (Kluwer Academic, Dordrecht, The Netherlands, 1988).
[CrossRef]

Pierson, J. E.

S. D. Stookey, G. H. Beall, and J. E. Pierson, J. Appl. Phys. 49, 5114 (1978).
[CrossRef]

Pliska, T.

M. Achtenhagen, S. Mohrdiek, T. Pliska, N. Matuschek, C. S. Harder, and A. Hardy, IEEE Photon. Technol. Lett. 13, 415 (2001).
[CrossRef]

Richardson, K. C.

Rogers, G. A.

B. F. Ventrudo, G. A. Rogers, G. S. Lick, D. Hargreaves, and T. N. Demayo, Electron. Lett. 30, 2147 (1994).
[CrossRef]

Shimizu, T.

A. Mugino, T. Kimura, Y. Irie, and T. Shimizu, in Optical Fiber Communications Conference (OFC) (Optical Society of America, Washington, D.C., 1999), p. 29.

Smirnov, V. I.

Stookey, S. D.

S. D. Stookey, G. H. Beall, and J. E. Pierson, J. Appl. Phys. 49, 5114 (1978).
[CrossRef]

Ventrudo, B. F.

B. F. Ventrudo, G. A. Rogers, G. S. Lick, D. Hargreaves, and T. N. Demayo, Electron. Lett. 30, 2147 (1994).
[CrossRef]

Walker, T. G.

I. A. Nelson, B. Chann, and T. G. Walker, Appl. Phys. Lett. 76, 1356 (2000).
[CrossRef]

B. Chann, I. A. Nelson, and T. G. Walker, Opt. Lett. 25, 1352 (2000).
[CrossRef]

Appl. Opt.

Appl. Phys. Lett.

I. A. Nelson, B. Chann, and T. G. Walker, Appl. Phys. Lett. 76, 1356 (2000).
[CrossRef]

C. J. Cuneo, J. J. Maki, and D. H. McIntyre, Appl. Phys. Lett. 64, 2625 (1994).
[CrossRef]

Bell Syst. Tech. J.

H. Kogelnik, Bell Syst. Tech. J. 48, 2909 (1969).
[CrossRef]

Electron. Lett.

B. F. Ventrudo, G. A. Rogers, G. S. Lick, D. Hargreaves, and T. N. Demayo, Electron. Lett. 30, 2147 (1994).
[CrossRef]

IEEE Photon. Technol. Lett.

M. Achtenhagen, S. Mohrdiek, T. Pliska, N. Matuschek, C. S. Harder, and A. Hardy, IEEE Photon. Technol. Lett. 13, 415 (2001).
[CrossRef]

J. Appl. Phys.

S. D. Stookey, G. H. Beall, and J. E. Pierson, J. Appl. Phys. 49, 5114 (1978).
[CrossRef]

Opt. Lett.

Rev. Sci. Instrum.

S. B. Bayram and T. E. Chupp, Rev. Sci. Instrum. 73, 4169 (2002).
[CrossRef]

Other

A. Mugino, T. Kimura, Y. Irie, and T. Shimizu, in Optical Fiber Communications Conference (OFC) (Optical Society of America, Washington, D.C., 1999), p. 29.

K. Petermann, Laser Diode Modulation and Noise (Kluwer Academic, Dordrecht, The Netherlands, 1988).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

(a) Illustration of the operation of a reflective VBG element. When a broadband light is incident on a VBG, only a narrow portion of the spectrum (single wavelength) is reflected by it, while all wavelengths outside the VBG reflectivity band are passing through unaffected. (b) Schematic of a laser diode (LD) bar wavelength stabilization by use of a VBG element. The laser output is typically collimated on the fast axis only; the VBG element is positioned after the lens and reflects a small portion of the emitted light directly back into the laser cavity. (c) Comparison of the slow axis (SA) divergence of a typical broad-area laser diode with the dependence of the reflectivity of a VBG (0.8 mm thick) on the incident angle for a given wavelength. Narrow angular acceptance of a VBG strongly reduces the total amount of monochromatic uncollimated light reflected by it. r.u., relative units.

Fig. 2
Fig. 2

Comparison of the output spectrum of a free-running and VBG-locked single-emitter laser. The laser diode parameters are 2-mm cavity length, 1 µm×100 µm emitting aperture, and approximately 0.5% front facet reflectivity. The VBG parameters are approximately 30% maximum reflectivity and 0.84-mm thickness. Inset, comparison of the output spectrum of a free-running and VBG-locked laser diode bar. The laser bar parameters are 19 emitters, 1 µm×150 µm emitting aperture for each emitter, and approximately 17% front facet reflectivity. The VBG parameters are approximately 60% maximum reflectivity and 0.9-mm thickness.

Fig. 3
Fig. 3

Output power versus current for a single-emitter laser diode under different conditions. The laser diode and the VBG parameters are the same as in Fig. 2. Inset, emission spectra of the laser diode at different currents when free running and locked by the VBG.

Fig. 4
Fig. 4

Emission wavelength of a single-emitter laser diode as a function of the heat sink temperature when free running without a FAC lens (circles) and locked by a VBG (squares). The drive current is 1.5 A in both cases. The VBG element is attached to the laser heat sink during the experiment. Inset, output power of a locked (squares) and fast-axis-collimated (circles) laser diode as a function of its heat sink temperature.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

Δλλ=λ2nd=Λd=1N,

Metrics