Abstract

The phenomenon of destruction of silica fiber cladding by the fiber fuse effect has been observed for the first time to the authors’ knowledge. Experiments on the optical discharge propagation along a fiber were conducted with fibers of decreased cladding thickness. The destruction of fiber cladding led to expansion of the optical discharge plasma and to a decrease of its density. This resulted in the termination of optical discharge propagation. The section of a fiber with decreased cladding thickness can act as a safety device to halt damage propagation.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. Kashyap and K. J. Blow, Electron. Lett. 24, 47 (1988).
    [CrossRef]
  2. D. P. Hand and P. St. J. Russell, Opt. Lett. 13, 767 (1988).
    [CrossRef] [PubMed]
  3. D. P. Hand and T. A. Birks, Electron. Lett. 25, 33 (1989).
    [CrossRef]
  4. R. M. Percival, E. S. R. Sikora, and R. Wyatt, Electron. Lett. 36, 414 (2000).
    [CrossRef]
  5. E. M. Dianov, V. M. Mashinsky, V. A. Myzina, Y. S. Sidorin, A. M. Streltsov, and A. V. Chickolini, Sov. Lightwave Commun. 2, 293 (1992).
  6. D. D. Davis, S. C. Mettler, and D. J. DiGiovanni, Proc. SPIE 2966, 592 (1997).
    [CrossRef]
  7. E. M. Dianov, I. A. Bufetov, V. G. Plotnichenko, A. A. Frolov, V. M. Mashinsky, M. F. Churbanov, and G. E. Snopatin, Quantum Electron. 32, 476 (2002).
    [CrossRef]
  8. E. M. Dianov, A. A. Frolov, I. A. Bufetov, Y. K. Chamorovsky, G. A. Ivanov, and I. L. Vorobjev, IEEE Photon. Technol. Lett. 16, 180 (2004).
    [CrossRef]
  9. Yu. P. Raizer, Laser-Induced Discharge Phenomena (Plenum, New York, 1977).

2004

E. M. Dianov, A. A. Frolov, I. A. Bufetov, Y. K. Chamorovsky, G. A. Ivanov, and I. L. Vorobjev, IEEE Photon. Technol. Lett. 16, 180 (2004).
[CrossRef]

2002

E. M. Dianov, I. A. Bufetov, V. G. Plotnichenko, A. A. Frolov, V. M. Mashinsky, M. F. Churbanov, and G. E. Snopatin, Quantum Electron. 32, 476 (2002).
[CrossRef]

2000

R. M. Percival, E. S. R. Sikora, and R. Wyatt, Electron. Lett. 36, 414 (2000).
[CrossRef]

1997

D. D. Davis, S. C. Mettler, and D. J. DiGiovanni, Proc. SPIE 2966, 592 (1997).
[CrossRef]

1992

E. M. Dianov, V. M. Mashinsky, V. A. Myzina, Y. S. Sidorin, A. M. Streltsov, and A. V. Chickolini, Sov. Lightwave Commun. 2, 293 (1992).

1989

D. P. Hand and T. A. Birks, Electron. Lett. 25, 33 (1989).
[CrossRef]

1988

Birks, T. A.

D. P. Hand and T. A. Birks, Electron. Lett. 25, 33 (1989).
[CrossRef]

Blow, K. J.

R. Kashyap and K. J. Blow, Electron. Lett. 24, 47 (1988).
[CrossRef]

Bufetov, I. A.

E. M. Dianov, A. A. Frolov, I. A. Bufetov, Y. K. Chamorovsky, G. A. Ivanov, and I. L. Vorobjev, IEEE Photon. Technol. Lett. 16, 180 (2004).
[CrossRef]

E. M. Dianov, I. A. Bufetov, V. G. Plotnichenko, A. A. Frolov, V. M. Mashinsky, M. F. Churbanov, and G. E. Snopatin, Quantum Electron. 32, 476 (2002).
[CrossRef]

Chamorovsky, Y. K.

E. M. Dianov, A. A. Frolov, I. A. Bufetov, Y. K. Chamorovsky, G. A. Ivanov, and I. L. Vorobjev, IEEE Photon. Technol. Lett. 16, 180 (2004).
[CrossRef]

Chickolini, A. V.

E. M. Dianov, V. M. Mashinsky, V. A. Myzina, Y. S. Sidorin, A. M. Streltsov, and A. V. Chickolini, Sov. Lightwave Commun. 2, 293 (1992).

Churbanov, M. F.

E. M. Dianov, I. A. Bufetov, V. G. Plotnichenko, A. A. Frolov, V. M. Mashinsky, M. F. Churbanov, and G. E. Snopatin, Quantum Electron. 32, 476 (2002).
[CrossRef]

Davis, D. D.

D. D. Davis, S. C. Mettler, and D. J. DiGiovanni, Proc. SPIE 2966, 592 (1997).
[CrossRef]

Dianov, E. M.

E. M. Dianov, A. A. Frolov, I. A. Bufetov, Y. K. Chamorovsky, G. A. Ivanov, and I. L. Vorobjev, IEEE Photon. Technol. Lett. 16, 180 (2004).
[CrossRef]

E. M. Dianov, I. A. Bufetov, V. G. Plotnichenko, A. A. Frolov, V. M. Mashinsky, M. F. Churbanov, and G. E. Snopatin, Quantum Electron. 32, 476 (2002).
[CrossRef]

E. M. Dianov, V. M. Mashinsky, V. A. Myzina, Y. S. Sidorin, A. M. Streltsov, and A. V. Chickolini, Sov. Lightwave Commun. 2, 293 (1992).

DiGiovanni, D. J.

D. D. Davis, S. C. Mettler, and D. J. DiGiovanni, Proc. SPIE 2966, 592 (1997).
[CrossRef]

Frolov, A. A.

E. M. Dianov, A. A. Frolov, I. A. Bufetov, Y. K. Chamorovsky, G. A. Ivanov, and I. L. Vorobjev, IEEE Photon. Technol. Lett. 16, 180 (2004).
[CrossRef]

E. M. Dianov, I. A. Bufetov, V. G. Plotnichenko, A. A. Frolov, V. M. Mashinsky, M. F. Churbanov, and G. E. Snopatin, Quantum Electron. 32, 476 (2002).
[CrossRef]

Hand, D. P.

D. P. Hand and T. A. Birks, Electron. Lett. 25, 33 (1989).
[CrossRef]

D. P. Hand and P. St. J. Russell, Opt. Lett. 13, 767 (1988).
[CrossRef] [PubMed]

Ivanov, G. A.

E. M. Dianov, A. A. Frolov, I. A. Bufetov, Y. K. Chamorovsky, G. A. Ivanov, and I. L. Vorobjev, IEEE Photon. Technol. Lett. 16, 180 (2004).
[CrossRef]

Kashyap, R.

R. Kashyap and K. J. Blow, Electron. Lett. 24, 47 (1988).
[CrossRef]

Mashinsky, V. M.

E. M. Dianov, I. A. Bufetov, V. G. Plotnichenko, A. A. Frolov, V. M. Mashinsky, M. F. Churbanov, and G. E. Snopatin, Quantum Electron. 32, 476 (2002).
[CrossRef]

E. M. Dianov, V. M. Mashinsky, V. A. Myzina, Y. S. Sidorin, A. M. Streltsov, and A. V. Chickolini, Sov. Lightwave Commun. 2, 293 (1992).

Mettler, S. C.

D. D. Davis, S. C. Mettler, and D. J. DiGiovanni, Proc. SPIE 2966, 592 (1997).
[CrossRef]

Myzina, V. A.

E. M. Dianov, V. M. Mashinsky, V. A. Myzina, Y. S. Sidorin, A. M. Streltsov, and A. V. Chickolini, Sov. Lightwave Commun. 2, 293 (1992).

Percival, R. M.

R. M. Percival, E. S. R. Sikora, and R. Wyatt, Electron. Lett. 36, 414 (2000).
[CrossRef]

Plotnichenko, V. G.

E. M. Dianov, I. A. Bufetov, V. G. Plotnichenko, A. A. Frolov, V. M. Mashinsky, M. F. Churbanov, and G. E. Snopatin, Quantum Electron. 32, 476 (2002).
[CrossRef]

Raizer, Yu. P.

Yu. P. Raizer, Laser-Induced Discharge Phenomena (Plenum, New York, 1977).

Russell, P. St. J.

Sidorin, Y. S.

E. M. Dianov, V. M. Mashinsky, V. A. Myzina, Y. S. Sidorin, A. M. Streltsov, and A. V. Chickolini, Sov. Lightwave Commun. 2, 293 (1992).

Sikora, E. S. R.

R. M. Percival, E. S. R. Sikora, and R. Wyatt, Electron. Lett. 36, 414 (2000).
[CrossRef]

Snopatin, G. E.

E. M. Dianov, I. A. Bufetov, V. G. Plotnichenko, A. A. Frolov, V. M. Mashinsky, M. F. Churbanov, and G. E. Snopatin, Quantum Electron. 32, 476 (2002).
[CrossRef]

Streltsov, A. M.

E. M. Dianov, V. M. Mashinsky, V. A. Myzina, Y. S. Sidorin, A. M. Streltsov, and A. V. Chickolini, Sov. Lightwave Commun. 2, 293 (1992).

Vorobjev, I. L.

E. M. Dianov, A. A. Frolov, I. A. Bufetov, Y. K. Chamorovsky, G. A. Ivanov, and I. L. Vorobjev, IEEE Photon. Technol. Lett. 16, 180 (2004).
[CrossRef]

Wyatt, R.

R. M. Percival, E. S. R. Sikora, and R. Wyatt, Electron. Lett. 36, 414 (2000).
[CrossRef]

Electron. Lett.

D. P. Hand and T. A. Birks, Electron. Lett. 25, 33 (1989).
[CrossRef]

R. M. Percival, E. S. R. Sikora, and R. Wyatt, Electron. Lett. 36, 414 (2000).
[CrossRef]

R. Kashyap and K. J. Blow, Electron. Lett. 24, 47 (1988).
[CrossRef]

IEEE Photon. Technol. Lett.

E. M. Dianov, A. A. Frolov, I. A. Bufetov, Y. K. Chamorovsky, G. A. Ivanov, and I. L. Vorobjev, IEEE Photon. Technol. Lett. 16, 180 (2004).
[CrossRef]

Opt. Lett.

Proc. SPIE

D. D. Davis, S. C. Mettler, and D. J. DiGiovanni, Proc. SPIE 2966, 592 (1997).
[CrossRef]

Quantum Electron.

E. M. Dianov, I. A. Bufetov, V. G. Plotnichenko, A. A. Frolov, V. M. Mashinsky, M. F. Churbanov, and G. E. Snopatin, Quantum Electron. 32, 476 (2002).
[CrossRef]

Sov. Lightwave Commun.

E. M. Dianov, V. M. Mashinsky, V. A. Myzina, Y. S. Sidorin, A. M. Streltsov, and A. V. Chickolini, Sov. Lightwave Commun. 2, 293 (1992).

Other

Yu. P. Raizer, Laser-Induced Discharge Phenomena (Plenum, New York, 1977).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Waist-formed section of etched fiber and the fuse’s stopping point.

Fig. 2
Fig. 2

Waist-formed section of fiber 9 after optical discharge propagation without stopping. At the top of the figure there is the general view of the fiber section; at the bottom, regions 1, 2, and 3 are shown on enlarged scales. The laser radiation propagated from left to right. Scales: the length of the arrow is 1, 64.5 µm; 2, 42 µm; and 3, 63 µm.

Fig. 3
Fig. 3

Waist-formed section of SMF-28 (fiber 1) (a) before the optical discharge propagation and (b), (c) after the optical discharge propagation. (a), (b) One division of the scale corresponds to 0.1 mm; (c) the width of the frame corresponds to 1 mm. The laser radiation propagated from right to left.

Fig. 4
Fig. 4

Etched fiber section disintegration at the moment that the optical discharge stops (fiber 8). The picture was taken by immersion: 1, silica cladding; 2, undisturbed fiber core; 3, bubbles or voids formed in the core after passage of the optical discharge. The bubble at the left corresponds to the discharge’s stopping point. The width of the frame is 250 µm. The laser radiation propagated from left to right.

Tables (1)

Tables Icon

Table 1 Parameters of the Fibers Investigated

Metrics