Abstract

A near-infrared diode laser with sample-grating distributed Bragg reflectors was used as a widely tunable spectroscopic source for multispecies chemical sensing. Quartz-enhanced photoacoustic spectroscopy was utilized to obtain high absorption sensitivity in a compact gas cell. CO2, H2O, C2H2, and NH3 were monitored. A noise equivalent sensitivity of 8×10-9 cm-1 W-1 Hz-1/2 for NH3 detection was achieved, which corresponds to a NH3 mixing ratio of 4.4 parts in 106 by volume (ppmv) with a 1-s time constant and available 5.2-mW optical power in the gas cell.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. Coldren, IEEE J. Sel. Top. Quantum Electron. 6, 988 (2000).
    [CrossRef]
  2. B. L. Upschulte, D. M. Sonnenfroh, and M. G. Allen, Appl. Opt. 38, 1506 (1999).
    [CrossRef]
  3. A. A. Kosterev, Y. A. Bakhirkin, R. F. Curl, and F. K. Tittel, Opt. Lett. 27, 1902 (2002).
    [CrossRef]
  4. V. Jayaraman, D. A. Cohen, and L. A. Coldren, Appl. Phys. Lett. 60, 2321 (2001).
    [CrossRef]
  5. J. Dunne, T. Farrell, and R. O’Dowd, in Digest of Conference on Lasers and Electro-Optics (Optical Society of America, Washington, D.C., 1999), pp. 147–148.
  6. S. L. Gilbert and W. C. Swann, NIST Spec. Publ. 260-133 (2001).
  7. M. E. Webber, D. S. Baer, and R. K. Hanson, Appl. Opt. 40, 2031 (2001).
    [CrossRef]
  8. A. Miklós, P. Hess, and Z. Bozóki, Rev. Sci. Instrum. 72, 1937 (2001).
    [CrossRef]
  9. A. A. Kosterev, Y. A. Bakhirkin, F. K. Tittel, S. Blaser, Y. Bonetti, and L. Hvozdara, Appl. Phys. B 78, 673 (2004).
    [CrossRef]
  10. M. B. Pushkarsky, M. E. Webber, and C. K. N. Patel, Appl. Phys. B 77, 381 (2003).
    [CrossRef]

2004 (1)

A. A. Kosterev, Y. A. Bakhirkin, F. K. Tittel, S. Blaser, Y. Bonetti, and L. Hvozdara, Appl. Phys. B 78, 673 (2004).
[CrossRef]

2003 (1)

M. B. Pushkarsky, M. E. Webber, and C. K. N. Patel, Appl. Phys. B 77, 381 (2003).
[CrossRef]

2002 (1)

2001 (4)

M. E. Webber, D. S. Baer, and R. K. Hanson, Appl. Opt. 40, 2031 (2001).
[CrossRef]

V. Jayaraman, D. A. Cohen, and L. A. Coldren, Appl. Phys. Lett. 60, 2321 (2001).
[CrossRef]

S. L. Gilbert and W. C. Swann, NIST Spec. Publ. 260-133 (2001).

A. Miklós, P. Hess, and Z. Bozóki, Rev. Sci. Instrum. 72, 1937 (2001).
[CrossRef]

2000 (1)

L. Coldren, IEEE J. Sel. Top. Quantum Electron. 6, 988 (2000).
[CrossRef]

1999 (1)

Allen, M. G.

Baer, D. S.

Bakhirkin, Y. A.

A. A. Kosterev, Y. A. Bakhirkin, F. K. Tittel, S. Blaser, Y. Bonetti, and L. Hvozdara, Appl. Phys. B 78, 673 (2004).
[CrossRef]

A. A. Kosterev, Y. A. Bakhirkin, R. F. Curl, and F. K. Tittel, Opt. Lett. 27, 1902 (2002).
[CrossRef]

Blaser, S.

A. A. Kosterev, Y. A. Bakhirkin, F. K. Tittel, S. Blaser, Y. Bonetti, and L. Hvozdara, Appl. Phys. B 78, 673 (2004).
[CrossRef]

Bonetti, Y.

A. A. Kosterev, Y. A. Bakhirkin, F. K. Tittel, S. Blaser, Y. Bonetti, and L. Hvozdara, Appl. Phys. B 78, 673 (2004).
[CrossRef]

Bozóki, Z.

A. Miklós, P. Hess, and Z. Bozóki, Rev. Sci. Instrum. 72, 1937 (2001).
[CrossRef]

Cohen, D. A.

V. Jayaraman, D. A. Cohen, and L. A. Coldren, Appl. Phys. Lett. 60, 2321 (2001).
[CrossRef]

Coldren, L.

L. Coldren, IEEE J. Sel. Top. Quantum Electron. 6, 988 (2000).
[CrossRef]

Coldren, L. A.

V. Jayaraman, D. A. Cohen, and L. A. Coldren, Appl. Phys. Lett. 60, 2321 (2001).
[CrossRef]

Curl, R. F.

Dunne, J.

J. Dunne, T. Farrell, and R. O’Dowd, in Digest of Conference on Lasers and Electro-Optics (Optical Society of America, Washington, D.C., 1999), pp. 147–148.

Farrell, T.

J. Dunne, T. Farrell, and R. O’Dowd, in Digest of Conference on Lasers and Electro-Optics (Optical Society of America, Washington, D.C., 1999), pp. 147–148.

Gilbert, S. L.

S. L. Gilbert and W. C. Swann, NIST Spec. Publ. 260-133 (2001).

Hanson, R. K.

Hess, P.

A. Miklós, P. Hess, and Z. Bozóki, Rev. Sci. Instrum. 72, 1937 (2001).
[CrossRef]

Hvozdara, L.

A. A. Kosterev, Y. A. Bakhirkin, F. K. Tittel, S. Blaser, Y. Bonetti, and L. Hvozdara, Appl. Phys. B 78, 673 (2004).
[CrossRef]

Jayaraman, V.

V. Jayaraman, D. A. Cohen, and L. A. Coldren, Appl. Phys. Lett. 60, 2321 (2001).
[CrossRef]

Kosterev, A. A.

A. A. Kosterev, Y. A. Bakhirkin, F. K. Tittel, S. Blaser, Y. Bonetti, and L. Hvozdara, Appl. Phys. B 78, 673 (2004).
[CrossRef]

A. A. Kosterev, Y. A. Bakhirkin, R. F. Curl, and F. K. Tittel, Opt. Lett. 27, 1902 (2002).
[CrossRef]

Miklós, A.

A. Miklós, P. Hess, and Z. Bozóki, Rev. Sci. Instrum. 72, 1937 (2001).
[CrossRef]

O’Dowd, R.

J. Dunne, T. Farrell, and R. O’Dowd, in Digest of Conference on Lasers and Electro-Optics (Optical Society of America, Washington, D.C., 1999), pp. 147–148.

Patel, C. K. N.

M. B. Pushkarsky, M. E. Webber, and C. K. N. Patel, Appl. Phys. B 77, 381 (2003).
[CrossRef]

Pushkarsky, M. B.

M. B. Pushkarsky, M. E. Webber, and C. K. N. Patel, Appl. Phys. B 77, 381 (2003).
[CrossRef]

Sonnenfroh, D. M.

Swann, W. C.

S. L. Gilbert and W. C. Swann, NIST Spec. Publ. 260-133 (2001).

Tittel, F. K.

A. A. Kosterev, Y. A. Bakhirkin, F. K. Tittel, S. Blaser, Y. Bonetti, and L. Hvozdara, Appl. Phys. B 78, 673 (2004).
[CrossRef]

A. A. Kosterev, Y. A. Bakhirkin, R. F. Curl, and F. K. Tittel, Opt. Lett. 27, 1902 (2002).
[CrossRef]

Upschulte, B. L.

Webber, M. E.

M. B. Pushkarsky, M. E. Webber, and C. K. N. Patel, Appl. Phys. B 77, 381 (2003).
[CrossRef]

M. E. Webber, D. S. Baer, and R. K. Hanson, Appl. Opt. 40, 2031 (2001).
[CrossRef]

Appl. Opt. (2)

Appl. Phys. B (2)

A. A. Kosterev, Y. A. Bakhirkin, F. K. Tittel, S. Blaser, Y. Bonetti, and L. Hvozdara, Appl. Phys. B 78, 673 (2004).
[CrossRef]

M. B. Pushkarsky, M. E. Webber, and C. K. N. Patel, Appl. Phys. B 77, 381 (2003).
[CrossRef]

Appl. Phys. Lett. (1)

V. Jayaraman, D. A. Cohen, and L. A. Coldren, Appl. Phys. Lett. 60, 2321 (2001).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

L. Coldren, IEEE J. Sel. Top. Quantum Electron. 6, 988 (2000).
[CrossRef]

NIST Spec. Publ. (1)

S. L. Gilbert and W. C. Swann, NIST Spec. Publ. 260-133 (2001).

Opt. Lett. (1)

Rev. Sci. Instrum. (1)

A. Miklós, P. Hess, and Z. Bozóki, Rev. Sci. Instrum. 72, 1937 (2001).
[CrossRef]

Other (1)

J. Dunne, T. Farrell, and R. O’Dowd, in Digest of Conference on Lasers and Electro-Optics (Optical Society of America, Washington, D.C., 1999), pp. 147–148.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Tunable diode laser power over the entire spectral tuning range.

Fig. 2
Fig. 2

Frequency fluctuations of the diode laser as a function of time.

Fig. 3
Fig. 3

Optical layout of a QEPAS-based gas sensor.

Fig. 4
Fig. 4

Optimum working pressure for QEPAS monitoring of C2H2.

Fig. 5
Fig. 5

QEPAS signal obtained during a frequency scan for the CO2 and H2O channels. A sample of exhaled human breath was analyzed. Line origins are listed in Table 1.

Fig. 6
Fig. 6

(a) Simultaneous monitoring of 0.12% of C2H2 and CO2 by laser channel switching. The black dots at the left reflect the PA signal; the lighter curve denotes the switching steps. (b) Monitoring of NH3 in a flow configuration for several concentrations. Vertical scale, lock-in amplifier’s output.

Tables (1)

Tables Icon

Table 1 Characteristics of the Four Laser Channels Used

Metrics