Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Fourier algorithm for four-wave-mixing signals from optically dense systems with memory

Not Accessible

Your library or personal account may give you access

Abstract

A triple Fourier-transform algorithm for generating and propagating femtosecond four-wave-mixing signals in optically thick samples is demonstrated. The algorithm has a dynamic range that is useful for tests of theory and simulations of experiments with an arbitrary nonlinear response. Although two-pulse echoes decay faster as optical density increases for a Bloch model, we find that systems with memory exhibit the opposite trend.

© 2004 Optical Society of America

Full Article  |  PDF Article
More Like This
Fully quantized theory of four-wave mixing with bosonic matter waves

Ying Wu and Xiaoxue Yang
Opt. Lett. 30(3) 311-313 (2005)

Four-wave mixing of linear waves and solitons in fibers with higher-order dispersion

A. V. Yulin, D. V. Skryabin, and P. St. J. Russell
Opt. Lett. 29(20) 2411-2413 (2004)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (2)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Tables (1)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (3)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved