Abstract

We propose and demonstrate a simple technique for determining the M/# parameter of a holographic recording material. In this method, divergent object and reference beams are used to produce a spatially varying index modulation. One can analyze the resultant diffraction pattern to find M/# by using only a single grating; existing techniques require many gratings.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M.-P. Bernal, H. Coufal, R. K. Grygier, J. A. Hoffnagle, C. M. Jefferson, R. M. Macfarlane, R. M. Shelby, G. T. Sincerbox, P. Wimmer, and G. Wittman, Appl. Opt. 35, 2360 (1996).
    [PubMed]
  2. L. Solymar, D. J. Webb, A. Grunnet-Jepson, and W. Solymar, eds., The Physics and Applications of Photorefractive Materials, Vol. 11 of Oxford Series in Optical and Imaging Sciences (Oxford University, New York, 1996).
  3. L. Dhar, A. Hale, H. Katz, M. L. Schilling, M. G. Schnoes, and F. G. Schilling, Opt. Lett. 24, 487 (1999).
    [CrossRef]
  4. M. S. Shahriar, J. Riccobono, M. Kleinschmit, and J. T. Shen, Opt. Commun. 220, 75 (2003).
    [CrossRef]
  5. F. K. Mok, G. W. Burr, and D. Psaltis, Opt. Lett. 21, 896 (1996).
    [CrossRef] [PubMed]
  6. G. W. Burr, W.-C. Chou, M. A. Neifeld, H. Coufal, J. A. Hoffnagle, and C. M. Jefferson, Appl. Opt. 37, 5431 (1998).
    [CrossRef]
  7. G. J. Steckman, R. Bittner, K. Meerholz, and D. Psaltis, Opt. Commun. 185, 13 (2000).
    [CrossRef]
  8. D. Psaltis, D. Brady, and K. Wagner, Appl. Opt. 27, 1752 (1988).
    [CrossRef]
  9. H. Kogelnik, Bell Syst. Tech. J. 48, 2909 (1969).
    [CrossRef]
  10. R. Burzynski, D. N. Kumar, S. Ghosal, and D. R. Tyczka, “Holographic recording material,” U.S. patent6,344,297 (February5, 2002).

2003 (1)

M. S. Shahriar, J. Riccobono, M. Kleinschmit, and J. T. Shen, Opt. Commun. 220, 75 (2003).
[CrossRef]

2000 (1)

G. J. Steckman, R. Bittner, K. Meerholz, and D. Psaltis, Opt. Commun. 185, 13 (2000).
[CrossRef]

1999 (1)

1998 (1)

1996 (2)

1988 (1)

1969 (1)

H. Kogelnik, Bell Syst. Tech. J. 48, 2909 (1969).
[CrossRef]

Bernal, M.-P.

Bittner, R.

G. J. Steckman, R. Bittner, K. Meerholz, and D. Psaltis, Opt. Commun. 185, 13 (2000).
[CrossRef]

Brady, D.

Burr, G. W.

Burzynski, R.

R. Burzynski, D. N. Kumar, S. Ghosal, and D. R. Tyczka, “Holographic recording material,” U.S. patent6,344,297 (February5, 2002).

Chou, W.-C.

Coufal, H.

Dhar, L.

Ghosal, S.

R. Burzynski, D. N. Kumar, S. Ghosal, and D. R. Tyczka, “Holographic recording material,” U.S. patent6,344,297 (February5, 2002).

Grygier, R. K.

Hale, A.

Hoffnagle, J. A.

Jefferson, C. M.

Katz, H.

Kleinschmit, M.

M. S. Shahriar, J. Riccobono, M. Kleinschmit, and J. T. Shen, Opt. Commun. 220, 75 (2003).
[CrossRef]

Kogelnik, H.

H. Kogelnik, Bell Syst. Tech. J. 48, 2909 (1969).
[CrossRef]

Kumar, D. N.

R. Burzynski, D. N. Kumar, S. Ghosal, and D. R. Tyczka, “Holographic recording material,” U.S. patent6,344,297 (February5, 2002).

Macfarlane, R. M.

Meerholz, K.

G. J. Steckman, R. Bittner, K. Meerholz, and D. Psaltis, Opt. Commun. 185, 13 (2000).
[CrossRef]

Mok, F. K.

Neifeld, M. A.

Psaltis, D.

Riccobono, J.

M. S. Shahriar, J. Riccobono, M. Kleinschmit, and J. T. Shen, Opt. Commun. 220, 75 (2003).
[CrossRef]

Schilling, F. G.

Schilling, M. L.

Schnoes, M. G.

Shahriar, M. S.

M. S. Shahriar, J. Riccobono, M. Kleinschmit, and J. T. Shen, Opt. Commun. 220, 75 (2003).
[CrossRef]

Shelby, R. M.

Shen, J. T.

M. S. Shahriar, J. Riccobono, M. Kleinschmit, and J. T. Shen, Opt. Commun. 220, 75 (2003).
[CrossRef]

Sincerbox, G. T.

Steckman, G. J.

G. J. Steckman, R. Bittner, K. Meerholz, and D. Psaltis, Opt. Commun. 185, 13 (2000).
[CrossRef]

Tyczka, D. R.

R. Burzynski, D. N. Kumar, S. Ghosal, and D. R. Tyczka, “Holographic recording material,” U.S. patent6,344,297 (February5, 2002).

Wagner, K.

Wimmer, P.

Wittman, G.

Appl. Opt. (3)

Bell Syst. Tech. J. (1)

H. Kogelnik, Bell Syst. Tech. J. 48, 2909 (1969).
[CrossRef]

Opt. Commun. (2)

M. S. Shahriar, J. Riccobono, M. Kleinschmit, and J. T. Shen, Opt. Commun. 220, 75 (2003).
[CrossRef]

G. J. Steckman, R. Bittner, K. Meerholz, and D. Psaltis, Opt. Commun. 185, 13 (2000).
[CrossRef]

Opt. Lett. (2)

Other (2)

R. Burzynski, D. N. Kumar, S. Ghosal, and D. R. Tyczka, “Holographic recording material,” U.S. patent6,344,297 (February5, 2002).

L. Solymar, D. J. Webb, A. Grunnet-Jepson, and W. Solymar, eds., The Physics and Applications of Photorefractive Materials, Vol. 11 of Oxford Series in Optical and Imaging Sciences (Oxford University, New York, 1996).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Result of simulation showing the evolution of the diffracted pattern as a function of holographic exposure for an even-Q [m=5,n=0,α=0, in Eq. (10)] value material with a plane-wave readout beam. Normalized diffraction efficiency is plotted versus radial distance.

Fig. 2
Fig. 2

Result of simulation for the diffraction pattern for fractional Q with a plane-wave readout beam [m=5,n=0,α=0.2 in Eq. (10)]. Normalized diffraction efficiency is plotted versus radial distance.

Fig. 3
Fig. 3

Hologram writing and readout geometry.

Fig. 4
Fig. 4

Experimentally observed diffraction patterns. As one reaches the optimum limit for holographic exposure, the number of fringes that are visible in the diffracted beam reaches a maximum. Exposure time T is labeled in the top right corner of eadch graph. All images are diffracted beams except for image 1, which is the transmitted beam for T=26 s.

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

η=IdI0=sin2πnαdλ,
η=sin2π2nnc,  η=1, n=nc.
n=nm1-exp-tτ˜,
Qi=1Nηi,  ηi1.
ηtQ2t2τ˜2π24,
ηt=sin2π2Q1-exp-tτ˜.
II˜1+cosKGx,
ηt,r=sin2π2Q1-exp-βI˜rt.
Ir=2I0 exp-2r2/ω021+cosKG·r, KG=K1-K2,
ηt,r=sin2π2Q1-exp-frtτ, 0fr1,
Q=2m+n+α, α<1, n=0,1.

Metrics