Abstract

Near-stoichiometric lithium tantalate (SLT) crystals were produced from congruent lithium tantalate by a vapor-transport equilibration process. Because of the resultant increase in photoconductivity and reduction in photogalvanism, the crystals showed no observable photorefractive damage at 514.5 nm up to the highest intensity used, 2 MW/cm2. The crystals also exhibited low green-induced infrared absorption, a Curie temperature of 693 °C, and a coercive field of 80 V/mm. The SLT samples were periodically poled with an 8µm-period grating, permitting first-order quasi-phase-matched second-harmonic generation of 532-nm radiation at 43 °C. A 17-mm-long sample generated 1.6 W of continuous-wave output power at 532 nm for 50 h. With 150-ns pulses at a 100-kHz repetition rate in the same sample, 5-W average-power, 532-nm radiation was generated for 1000 h. No damage to the crystal and no aging effects were observed during these experiments.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Y. Furukawa, K. Kitamura, A. Alexandrovski, R. K. Route, M. M. Fejer, and G. Foulon, Appl. Phys. Lett. 78, 1970 (2001).
    [CrossRef]
  2. K. Mizuuchi, A. Morikawa, T. Sugita, K. Yamamoto, N. Pavel, I. Shoji, and T. Taira, Jpn. J. Appl. Phys. 42, L1296 (2003).
    [CrossRef]
  3. V. Gopalan, T. E. Mitchell, Y. Furukawa, and K. Kitamura, Appl. Phys. Lett. 72, 1981 (1998).
    [CrossRef]
  4. Y. Furukawa, K. Kitamura, S. Takekawa, A. Miyamoto, M. Terao, and N. Suda, Appl. Phys. Lett. 77, 2494 (2000).
    [CrossRef]
  5. A. Bruner, D. Eger, M. B. Oron, P. Blau, and M. Katz, Opt. Lett. 28, 194 (2003).
    [CrossRef] [PubMed]
  6. T. Hatanaka, K. Nakamura, T. Taniuchi, H. Ito, Y. Furukawa, and K. Kitamura, Opt. Lett. 25, 651 (2000).
    [CrossRef]
  7. V. Bermudez, P. S. Dutta, M. D. Serrano, and E. Dieguez, Appl. Phys. Lett. 70, 729 (1997).
    [CrossRef]
  8. R. L. Holman, in Processing of Crystalline Ceramics, H. Palmour and R. F. Davis, eds., Vol. 11 of Materials, Science Research (Plenum, New York, 1978), p. 343.
    [CrossRef]
  9. D. H. Jundt, M. M. Fejer, and R. L. Byer, IEEE J. Quantum Electron. 26, 135 (1990).
    [CrossRef]
  10. S. C. Abrahams and P. Marsh, Acta. Crystallogr. Sect. B 42, 61 (1986).
    [CrossRef]
  11. A. M. Glass, D. von der Linde, D. H. Auston, and T. J. Negran, J. Electron. Mater. 4, 915 (1975).
    [CrossRef]
  12. P. Gunter and J.-P. Huignard, in Photorefractive Materials and Their Applications, P. Gunther and J.-P. Huignard, eds. (Springer-Verlag, Berlin, 1988), pp. 7–70.
    [CrossRef]
  13. A. Alexandrovski, G. Foulon, L. E. Myers, R. K. Route, and M. M. Fejer, Proc. SPIE 3610, 44 (1999).
    [CrossRef]
  14. L. E. Myers, R. C. Eckardt, M. M. Fejer, R. L. Byer, and W. R. Bosenberg, Opt. Lett. 21, 591 (1996).
    [CrossRef] [PubMed]

2003

K. Mizuuchi, A. Morikawa, T. Sugita, K. Yamamoto, N. Pavel, I. Shoji, and T. Taira, Jpn. J. Appl. Phys. 42, L1296 (2003).
[CrossRef]

A. Bruner, D. Eger, M. B. Oron, P. Blau, and M. Katz, Opt. Lett. 28, 194 (2003).
[CrossRef] [PubMed]

2001

Y. Furukawa, K. Kitamura, A. Alexandrovski, R. K. Route, M. M. Fejer, and G. Foulon, Appl. Phys. Lett. 78, 1970 (2001).
[CrossRef]

2000

Y. Furukawa, K. Kitamura, S. Takekawa, A. Miyamoto, M. Terao, and N. Suda, Appl. Phys. Lett. 77, 2494 (2000).
[CrossRef]

T. Hatanaka, K. Nakamura, T. Taniuchi, H. Ito, Y. Furukawa, and K. Kitamura, Opt. Lett. 25, 651 (2000).
[CrossRef]

1999

A. Alexandrovski, G. Foulon, L. E. Myers, R. K. Route, and M. M. Fejer, Proc. SPIE 3610, 44 (1999).
[CrossRef]

1998

V. Gopalan, T. E. Mitchell, Y. Furukawa, and K. Kitamura, Appl. Phys. Lett. 72, 1981 (1998).
[CrossRef]

1997

V. Bermudez, P. S. Dutta, M. D. Serrano, and E. Dieguez, Appl. Phys. Lett. 70, 729 (1997).
[CrossRef]

1996

1990

D. H. Jundt, M. M. Fejer, and R. L. Byer, IEEE J. Quantum Electron. 26, 135 (1990).
[CrossRef]

1986

S. C. Abrahams and P. Marsh, Acta. Crystallogr. Sect. B 42, 61 (1986).
[CrossRef]

1975

A. M. Glass, D. von der Linde, D. H. Auston, and T. J. Negran, J. Electron. Mater. 4, 915 (1975).
[CrossRef]

Abrahams, S. C.

S. C. Abrahams and P. Marsh, Acta. Crystallogr. Sect. B 42, 61 (1986).
[CrossRef]

Alexandrovski, A.

Y. Furukawa, K. Kitamura, A. Alexandrovski, R. K. Route, M. M. Fejer, and G. Foulon, Appl. Phys. Lett. 78, 1970 (2001).
[CrossRef]

A. Alexandrovski, G. Foulon, L. E. Myers, R. K. Route, and M. M. Fejer, Proc. SPIE 3610, 44 (1999).
[CrossRef]

Auston, D. H.

A. M. Glass, D. von der Linde, D. H. Auston, and T. J. Negran, J. Electron. Mater. 4, 915 (1975).
[CrossRef]

Bermudez, V.

V. Bermudez, P. S. Dutta, M. D. Serrano, and E. Dieguez, Appl. Phys. Lett. 70, 729 (1997).
[CrossRef]

Blau, P.

Bosenberg, W. R.

Bruner, A.

Byer, R. L.

Dieguez, E.

V. Bermudez, P. S. Dutta, M. D. Serrano, and E. Dieguez, Appl. Phys. Lett. 70, 729 (1997).
[CrossRef]

Dutta, P. S.

V. Bermudez, P. S. Dutta, M. D. Serrano, and E. Dieguez, Appl. Phys. Lett. 70, 729 (1997).
[CrossRef]

Eckardt, R. C.

Eger, D.

Fejer, M. M.

Y. Furukawa, K. Kitamura, A. Alexandrovski, R. K. Route, M. M. Fejer, and G. Foulon, Appl. Phys. Lett. 78, 1970 (2001).
[CrossRef]

A. Alexandrovski, G. Foulon, L. E. Myers, R. K. Route, and M. M. Fejer, Proc. SPIE 3610, 44 (1999).
[CrossRef]

L. E. Myers, R. C. Eckardt, M. M. Fejer, R. L. Byer, and W. R. Bosenberg, Opt. Lett. 21, 591 (1996).
[CrossRef] [PubMed]

D. H. Jundt, M. M. Fejer, and R. L. Byer, IEEE J. Quantum Electron. 26, 135 (1990).
[CrossRef]

Foulon, G.

Y. Furukawa, K. Kitamura, A. Alexandrovski, R. K. Route, M. M. Fejer, and G. Foulon, Appl. Phys. Lett. 78, 1970 (2001).
[CrossRef]

A. Alexandrovski, G. Foulon, L. E. Myers, R. K. Route, and M. M. Fejer, Proc. SPIE 3610, 44 (1999).
[CrossRef]

Furukawa, Y.

Y. Furukawa, K. Kitamura, A. Alexandrovski, R. K. Route, M. M. Fejer, and G. Foulon, Appl. Phys. Lett. 78, 1970 (2001).
[CrossRef]

T. Hatanaka, K. Nakamura, T. Taniuchi, H. Ito, Y. Furukawa, and K. Kitamura, Opt. Lett. 25, 651 (2000).
[CrossRef]

Y. Furukawa, K. Kitamura, S. Takekawa, A. Miyamoto, M. Terao, and N. Suda, Appl. Phys. Lett. 77, 2494 (2000).
[CrossRef]

V. Gopalan, T. E. Mitchell, Y. Furukawa, and K. Kitamura, Appl. Phys. Lett. 72, 1981 (1998).
[CrossRef]

Glass, A. M.

A. M. Glass, D. von der Linde, D. H. Auston, and T. J. Negran, J. Electron. Mater. 4, 915 (1975).
[CrossRef]

Gopalan, V.

V. Gopalan, T. E. Mitchell, Y. Furukawa, and K. Kitamura, Appl. Phys. Lett. 72, 1981 (1998).
[CrossRef]

Gunter, P.

P. Gunter and J.-P. Huignard, in Photorefractive Materials and Their Applications, P. Gunther and J.-P. Huignard, eds. (Springer-Verlag, Berlin, 1988), pp. 7–70.
[CrossRef]

Hatanaka, T.

Holman, R. L.

R. L. Holman, in Processing of Crystalline Ceramics, H. Palmour and R. F. Davis, eds., Vol. 11 of Materials, Science Research (Plenum, New York, 1978), p. 343.
[CrossRef]

Huignard, J.-P.

P. Gunter and J.-P. Huignard, in Photorefractive Materials and Their Applications, P. Gunther and J.-P. Huignard, eds. (Springer-Verlag, Berlin, 1988), pp. 7–70.
[CrossRef]

Ito, H.

Jundt, D. H.

D. H. Jundt, M. M. Fejer, and R. L. Byer, IEEE J. Quantum Electron. 26, 135 (1990).
[CrossRef]

Katz, M.

Kitamura, K.

Y. Furukawa, K. Kitamura, A. Alexandrovski, R. K. Route, M. M. Fejer, and G. Foulon, Appl. Phys. Lett. 78, 1970 (2001).
[CrossRef]

T. Hatanaka, K. Nakamura, T. Taniuchi, H. Ito, Y. Furukawa, and K. Kitamura, Opt. Lett. 25, 651 (2000).
[CrossRef]

Y. Furukawa, K. Kitamura, S. Takekawa, A. Miyamoto, M. Terao, and N. Suda, Appl. Phys. Lett. 77, 2494 (2000).
[CrossRef]

V. Gopalan, T. E. Mitchell, Y. Furukawa, and K. Kitamura, Appl. Phys. Lett. 72, 1981 (1998).
[CrossRef]

Marsh, P.

S. C. Abrahams and P. Marsh, Acta. Crystallogr. Sect. B 42, 61 (1986).
[CrossRef]

Mitchell, T. E.

V. Gopalan, T. E. Mitchell, Y. Furukawa, and K. Kitamura, Appl. Phys. Lett. 72, 1981 (1998).
[CrossRef]

Miyamoto, A.

Y. Furukawa, K. Kitamura, S. Takekawa, A. Miyamoto, M. Terao, and N. Suda, Appl. Phys. Lett. 77, 2494 (2000).
[CrossRef]

Mizuuchi, K.

K. Mizuuchi, A. Morikawa, T. Sugita, K. Yamamoto, N. Pavel, I. Shoji, and T. Taira, Jpn. J. Appl. Phys. 42, L1296 (2003).
[CrossRef]

Morikawa, A.

K. Mizuuchi, A. Morikawa, T. Sugita, K. Yamamoto, N. Pavel, I. Shoji, and T. Taira, Jpn. J. Appl. Phys. 42, L1296 (2003).
[CrossRef]

Myers, L. E.

A. Alexandrovski, G. Foulon, L. E. Myers, R. K. Route, and M. M. Fejer, Proc. SPIE 3610, 44 (1999).
[CrossRef]

L. E. Myers, R. C. Eckardt, M. M. Fejer, R. L. Byer, and W. R. Bosenberg, Opt. Lett. 21, 591 (1996).
[CrossRef] [PubMed]

Nakamura, K.

Negran, T. J.

A. M. Glass, D. von der Linde, D. H. Auston, and T. J. Negran, J. Electron. Mater. 4, 915 (1975).
[CrossRef]

Oron, M. B.

Pavel, N.

K. Mizuuchi, A. Morikawa, T. Sugita, K. Yamamoto, N. Pavel, I. Shoji, and T. Taira, Jpn. J. Appl. Phys. 42, L1296 (2003).
[CrossRef]

Route, R. K.

Y. Furukawa, K. Kitamura, A. Alexandrovski, R. K. Route, M. M. Fejer, and G. Foulon, Appl. Phys. Lett. 78, 1970 (2001).
[CrossRef]

A. Alexandrovski, G. Foulon, L. E. Myers, R. K. Route, and M. M. Fejer, Proc. SPIE 3610, 44 (1999).
[CrossRef]

Serrano, M. D.

V. Bermudez, P. S. Dutta, M. D. Serrano, and E. Dieguez, Appl. Phys. Lett. 70, 729 (1997).
[CrossRef]

Shoji, I.

K. Mizuuchi, A. Morikawa, T. Sugita, K. Yamamoto, N. Pavel, I. Shoji, and T. Taira, Jpn. J. Appl. Phys. 42, L1296 (2003).
[CrossRef]

Suda, N.

Y. Furukawa, K. Kitamura, S. Takekawa, A. Miyamoto, M. Terao, and N. Suda, Appl. Phys. Lett. 77, 2494 (2000).
[CrossRef]

Sugita, T.

K. Mizuuchi, A. Morikawa, T. Sugita, K. Yamamoto, N. Pavel, I. Shoji, and T. Taira, Jpn. J. Appl. Phys. 42, L1296 (2003).
[CrossRef]

Taira, T.

K. Mizuuchi, A. Morikawa, T. Sugita, K. Yamamoto, N. Pavel, I. Shoji, and T. Taira, Jpn. J. Appl. Phys. 42, L1296 (2003).
[CrossRef]

Takekawa, S.

Y. Furukawa, K. Kitamura, S. Takekawa, A. Miyamoto, M. Terao, and N. Suda, Appl. Phys. Lett. 77, 2494 (2000).
[CrossRef]

Taniuchi, T.

Terao, M.

Y. Furukawa, K. Kitamura, S. Takekawa, A. Miyamoto, M. Terao, and N. Suda, Appl. Phys. Lett. 77, 2494 (2000).
[CrossRef]

von der Linde, D.

A. M. Glass, D. von der Linde, D. H. Auston, and T. J. Negran, J. Electron. Mater. 4, 915 (1975).
[CrossRef]

Yamamoto, K.

K. Mizuuchi, A. Morikawa, T. Sugita, K. Yamamoto, N. Pavel, I. Shoji, and T. Taira, Jpn. J. Appl. Phys. 42, L1296 (2003).
[CrossRef]

Acta. Crystallogr. Sect. B

S. C. Abrahams and P. Marsh, Acta. Crystallogr. Sect. B 42, 61 (1986).
[CrossRef]

Appl. Phys. Lett.

Y. Furukawa, K. Kitamura, S. Takekawa, A. Miyamoto, M. Terao, and N. Suda, Appl. Phys. Lett. 77, 2494 (2000).
[CrossRef]

Appl. Phys. Lett.

V. Gopalan, T. E. Mitchell, Y. Furukawa, and K. Kitamura, Appl. Phys. Lett. 72, 1981 (1998).
[CrossRef]

V. Bermudez, P. S. Dutta, M. D. Serrano, and E. Dieguez, Appl. Phys. Lett. 70, 729 (1997).
[CrossRef]

Y. Furukawa, K. Kitamura, A. Alexandrovski, R. K. Route, M. M. Fejer, and G. Foulon, Appl. Phys. Lett. 78, 1970 (2001).
[CrossRef]

IEEE J. Quantum Electron.

D. H. Jundt, M. M. Fejer, and R. L. Byer, IEEE J. Quantum Electron. 26, 135 (1990).
[CrossRef]

J. Electron. Mater.

A. M. Glass, D. von der Linde, D. H. Auston, and T. J. Negran, J. Electron. Mater. 4, 915 (1975).
[CrossRef]

Jpn. J. Appl. Phys.

K. Mizuuchi, A. Morikawa, T. Sugita, K. Yamamoto, N. Pavel, I. Shoji, and T. Taira, Jpn. J. Appl. Phys. 42, L1296 (2003).
[CrossRef]

Materials, Science Research

R. L. Holman, in Processing of Crystalline Ceramics, H. Palmour and R. F. Davis, eds., Vol. 11 of Materials, Science Research (Plenum, New York, 1978), p. 343.
[CrossRef]

Opt. Lett.

Proc. SPIE

A. Alexandrovski, G. Foulon, L. E. Myers, R. K. Route, and M. M. Fejer, Proc. SPIE 3610, 44 (1999).
[CrossRef]

Other

P. Gunter and J.-P. Huignard, in Photorefractive Materials and Their Applications, P. Gunther and J.-P. Huignard, eds. (Springer-Verlag, Berlin, 1988), pp. 7–70.
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (2)

Fig. 1
Fig. 1

Fixture for the measurements of the photogalvanic and photoconductive currents.

Fig. 2
Fig. 2

Temperature tuning curve for SHG of 1.064µm radiation in a 17-mm-long, 8µm-period VSLT. The dependence is not a simple sinc2 because of the near-confocal focusing of the pump beam. The close agreement between theory and experiment indicates the optical homogeneity of the VSLT crystal. Inset, 8µm-period quasi-phase-matched grating made visible by etching in hydrofluoric acid.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

J=σE+κIzˆ,

Metrics