Abstract

A one-dimensional photonic crystal containing a single CdS defect layer of various thicknesses was fabricated. The dependence of the two-photon-absorption (TPA) coefficient on the defect mode was investigated by use of a femtosecond pump–probe method. Experimental results show that the TPA coefficient of the CdS defect layer depends strongly on the defect mode in the photonic bandgap. This is consistent with the predicted dependence of light intensity within the defect layer.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. Yablonovitch, Phys. Rev. Lett. 58, 2059 (1987).
    [Crossref] [PubMed]
  2. S. John, Phys. Today 44, 32 (1991).
    [Crossref]
  3. T. Hattori, N. Tsurumachi, and H. Nakatsuka, J. Opt. Soc. Am. B 14, 348 (1997).
    [Crossref]
  4. I. R. Matias, I. D. Villar, F. J. Arregui, and R. O. Claus, Opt. Lett. 28, 1099 (2003).
    [Crossref]
  5. G. J. Schneider and G. H. Wastson, Appl. Phys. Lett. 83, 5350 (2003).
    [Crossref]
  6. M. C. Larciprete, C. Sibilia, S. Paoloni, M. Bertolotti, F. Sarto, and M. Scalora, J. Appl. Phys. 93, 5013 (2003).
    [Crossref]
  7. J. Danlaert, K. Fobelets, I. Veretennicoff, G. Vitran, and R. Reinisch, Phys. Rev. B 44, 8214 (1991).
    [Crossref]
  8. G. Ma, L. Guo, J. Mi, Y. Liu, S. Qian, D. Pan, and Y. Huang, Solid State Commun. 118, 633 (2001).
    [Crossref]
  9. T. D. Krauss and F. W. Wise, Appl. Phys. Lett. 65, 1739 (1994).
    [Crossref]
  10. R. L. Sutherland, Handbook of Nonlinear Optics (Marcel Dekker, New York, 2003), pp. 584–587.

2003 (3)

G. J. Schneider and G. H. Wastson, Appl. Phys. Lett. 83, 5350 (2003).
[Crossref]

M. C. Larciprete, C. Sibilia, S. Paoloni, M. Bertolotti, F. Sarto, and M. Scalora, J. Appl. Phys. 93, 5013 (2003).
[Crossref]

I. R. Matias, I. D. Villar, F. J. Arregui, and R. O. Claus, Opt. Lett. 28, 1099 (2003).
[Crossref]

2001 (1)

G. Ma, L. Guo, J. Mi, Y. Liu, S. Qian, D. Pan, and Y. Huang, Solid State Commun. 118, 633 (2001).
[Crossref]

1997 (1)

1994 (1)

T. D. Krauss and F. W. Wise, Appl. Phys. Lett. 65, 1739 (1994).
[Crossref]

1991 (2)

J. Danlaert, K. Fobelets, I. Veretennicoff, G. Vitran, and R. Reinisch, Phys. Rev. B 44, 8214 (1991).
[Crossref]

S. John, Phys. Today 44, 32 (1991).
[Crossref]

1987 (1)

E. Yablonovitch, Phys. Rev. Lett. 58, 2059 (1987).
[Crossref] [PubMed]

Arregui, F. J.

Bertolotti, M.

M. C. Larciprete, C. Sibilia, S. Paoloni, M. Bertolotti, F. Sarto, and M. Scalora, J. Appl. Phys. 93, 5013 (2003).
[Crossref]

Claus, R. O.

Danlaert, J.

J. Danlaert, K. Fobelets, I. Veretennicoff, G. Vitran, and R. Reinisch, Phys. Rev. B 44, 8214 (1991).
[Crossref]

Fobelets, K.

J. Danlaert, K. Fobelets, I. Veretennicoff, G. Vitran, and R. Reinisch, Phys. Rev. B 44, 8214 (1991).
[Crossref]

Guo, L.

G. Ma, L. Guo, J. Mi, Y. Liu, S. Qian, D. Pan, and Y. Huang, Solid State Commun. 118, 633 (2001).
[Crossref]

Hattori, T.

Huang, Y.

G. Ma, L. Guo, J. Mi, Y. Liu, S. Qian, D. Pan, and Y. Huang, Solid State Commun. 118, 633 (2001).
[Crossref]

John, S.

S. John, Phys. Today 44, 32 (1991).
[Crossref]

Krauss, T. D.

T. D. Krauss and F. W. Wise, Appl. Phys. Lett. 65, 1739 (1994).
[Crossref]

Larciprete, M. C.

M. C. Larciprete, C. Sibilia, S. Paoloni, M. Bertolotti, F. Sarto, and M. Scalora, J. Appl. Phys. 93, 5013 (2003).
[Crossref]

Liu, Y.

G. Ma, L. Guo, J. Mi, Y. Liu, S. Qian, D. Pan, and Y. Huang, Solid State Commun. 118, 633 (2001).
[Crossref]

Ma, G.

G. Ma, L. Guo, J. Mi, Y. Liu, S. Qian, D. Pan, and Y. Huang, Solid State Commun. 118, 633 (2001).
[Crossref]

Matias, I. R.

Mi, J.

G. Ma, L. Guo, J. Mi, Y. Liu, S. Qian, D. Pan, and Y. Huang, Solid State Commun. 118, 633 (2001).
[Crossref]

Nakatsuka, H.

Pan, D.

G. Ma, L. Guo, J. Mi, Y. Liu, S. Qian, D. Pan, and Y. Huang, Solid State Commun. 118, 633 (2001).
[Crossref]

Paoloni, S.

M. C. Larciprete, C. Sibilia, S. Paoloni, M. Bertolotti, F. Sarto, and M. Scalora, J. Appl. Phys. 93, 5013 (2003).
[Crossref]

Qian, S.

G. Ma, L. Guo, J. Mi, Y. Liu, S. Qian, D. Pan, and Y. Huang, Solid State Commun. 118, 633 (2001).
[Crossref]

Reinisch, R.

J. Danlaert, K. Fobelets, I. Veretennicoff, G. Vitran, and R. Reinisch, Phys. Rev. B 44, 8214 (1991).
[Crossref]

Sarto, F.

M. C. Larciprete, C. Sibilia, S. Paoloni, M. Bertolotti, F. Sarto, and M. Scalora, J. Appl. Phys. 93, 5013 (2003).
[Crossref]

Scalora, M.

M. C. Larciprete, C. Sibilia, S. Paoloni, M. Bertolotti, F. Sarto, and M. Scalora, J. Appl. Phys. 93, 5013 (2003).
[Crossref]

Schneider, G. J.

G. J. Schneider and G. H. Wastson, Appl. Phys. Lett. 83, 5350 (2003).
[Crossref]

Sibilia, C.

M. C. Larciprete, C. Sibilia, S. Paoloni, M. Bertolotti, F. Sarto, and M. Scalora, J. Appl. Phys. 93, 5013 (2003).
[Crossref]

Sutherland, R. L.

R. L. Sutherland, Handbook of Nonlinear Optics (Marcel Dekker, New York, 2003), pp. 584–587.

Tsurumachi, N.

Veretennicoff, I.

J. Danlaert, K. Fobelets, I. Veretennicoff, G. Vitran, and R. Reinisch, Phys. Rev. B 44, 8214 (1991).
[Crossref]

Villar, I. D.

Vitran, G.

J. Danlaert, K. Fobelets, I. Veretennicoff, G. Vitran, and R. Reinisch, Phys. Rev. B 44, 8214 (1991).
[Crossref]

Wastson, G. H.

G. J. Schneider and G. H. Wastson, Appl. Phys. Lett. 83, 5350 (2003).
[Crossref]

Wise, F. W.

T. D. Krauss and F. W. Wise, Appl. Phys. Lett. 65, 1739 (1994).
[Crossref]

Yablonovitch, E.

E. Yablonovitch, Phys. Rev. Lett. 58, 2059 (1987).
[Crossref] [PubMed]

Appl. Phys. Lett. (2)

G. J. Schneider and G. H. Wastson, Appl. Phys. Lett. 83, 5350 (2003).
[Crossref]

T. D. Krauss and F. W. Wise, Appl. Phys. Lett. 65, 1739 (1994).
[Crossref]

J. Appl. Phys. (1)

M. C. Larciprete, C. Sibilia, S. Paoloni, M. Bertolotti, F. Sarto, and M. Scalora, J. Appl. Phys. 93, 5013 (2003).
[Crossref]

J. Opt. Soc. Am. B (1)

Opt. Lett. (1)

Phys. Rev. B (1)

J. Danlaert, K. Fobelets, I. Veretennicoff, G. Vitran, and R. Reinisch, Phys. Rev. B 44, 8214 (1991).
[Crossref]

Phys. Rev. Lett. (1)

E. Yablonovitch, Phys. Rev. Lett. 58, 2059 (1987).
[Crossref] [PubMed]

Phys. Today (1)

S. John, Phys. Today 44, 32 (1991).
[Crossref]

Solid State Commun. (1)

G. Ma, L. Guo, J. Mi, Y. Liu, S. Qian, D. Pan, and Y. Huang, Solid State Commun. 118, 633 (2001).
[Crossref]

Other (1)

R. L. Sutherland, Handbook of Nonlinear Optics (Marcel Dekker, New York, 2003), pp. 584–587.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

(a) Optical transmission spectrum of a 1D PC with a CdS defect layer thickness of 324 nm: dotted curve, experimental results; solid curve, simulation calculated according to the transfer matrix method. A schematic of the composition of a 1D PC with a defect layer is shown in the inset. (b) Measured transmission spectra of a 1D PC with defect layer thicknesses indicated in the figure. (c) On-resonance defect mode versus defect layer thickness.

Fig. 2
Fig. 2

(a) Incident intensity (I) dependence of the transmission changes (ΔT) of the probe beam at zero delay time in 1D PC with the CdS defect mode at 800 nm (it was plotted as log ΔTlog I). Inset, geometric layout of the pump and probe beams relative to the sample, where L is the focusing lens with f=5 cm and S and A stand for sample and aperture, respectively. (b) Defect mode dependence of the TPA coefficient; the dotted line denotes the TPA coefficient of pure CdS film. Inset, transient time evolution of the three samples with the resonant mode indicated.

Fig. 3
Fig. 3

Calculated defect mode dependence of electric field distribution within a 1D PC structure with an incidence wavelength at 800 nm. The gray cross-hatched and white blocks represent TiO2 and SiO2 stacks, respectively. The black lined block, from z=500 nm to z=774 nm (minimum) and 868 nm (maximum), represents the CdS defect layer.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

ΔTβIpumpIprobeLβI2L,

Metrics