Abstract

We present a method for parallel coupling from a single-mode fiber, or fiber ribbon, into a silicon-on-insulator waveguide for integration with silicon optoelectronic circuits. The coupler incorporates the advantages of the vertically tapered waveguides and prism couplers, yet offers the flexibility of planar integration. The coupler can be fabricated by use of either wafer polishing technology or gray-scale photolithography. When optimal coupling is achieved in our experimental setup, the coupler can be packaged by epoxy bonding to form a fiber-waveguide parallel coupler or connector. Two-dimensional electromagnetic calculation predicts a coupling efficiency of 77% (-1.14dB insertion loss) for a silicon-to-silicon coupler with a uniform tunnel layer. The coupling efficiency is experimentally achieved to be 46% (-3.4dB insertion loss), excluding the loss in silicon and the reflections from the input surface and the output facet.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Yariv, IEEE J. Quantum Electron. QE-9, 919 (1973).
    [CrossRef]
  2. R. G. Hunsperge, A. Yariv, and A. Lee, Appl. Opt. 16, 1026 (1977).
    [CrossRef]
  3. M. Kazem Shams, D. Botez, and S. Wang, Opt. Lett. 4, 96 (1979).
    [CrossRef]
  4. D. Taillaert, P. Bienstman, T. F. Krauss, P. V. Daele, I. Moerman, S. Verstuyft, K. D. Mesel, and R. Baets, IEEE J.Quantum Electron. 38, 949 (2002).
    [CrossRef]
  5. S. Deliwala, “Method for forming passive optical coupling device,” U.S. patent application (January16, 2003).
  6. A. Sure, T. Dillon, J. Murakowski, C. Lin, D. Pustai, and D. W. Prather, Opt. Express 11, 3555 (2003), http://www.opticsexpress.org .
    [CrossRef] [PubMed]
  7. H. Nishihara, M. Haruna, and T. Suhara, Optical Integrated Circuits (McGraw-Hill, New York, 1987).
  8. R. Ulrich, J. Opt. Soc. Am. 60, 1337 (1970).
  9. A. Taflove and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method (Artec House, Norwood, Mass., 2000).
  10. T. E. Murphy, “Design, fabrication and measurement of integrated Bragg grating optical filters,” Ph.D. dissertation (Massachusetts Institute of Technology, Cambridge, Mass., 2001), p. 181.

2003

2002

D. Taillaert, P. Bienstman, T. F. Krauss, P. V. Daele, I. Moerman, S. Verstuyft, K. D. Mesel, and R. Baets, IEEE J.Quantum Electron. 38, 949 (2002).
[CrossRef]

1979

1977

1973

A. Yariv, IEEE J. Quantum Electron. QE-9, 919 (1973).
[CrossRef]

1970

Baets, R.

D. Taillaert, P. Bienstman, T. F. Krauss, P. V. Daele, I. Moerman, S. Verstuyft, K. D. Mesel, and R. Baets, IEEE J.Quantum Electron. 38, 949 (2002).
[CrossRef]

Bienstman, P.

D. Taillaert, P. Bienstman, T. F. Krauss, P. V. Daele, I. Moerman, S. Verstuyft, K. D. Mesel, and R. Baets, IEEE J.Quantum Electron. 38, 949 (2002).
[CrossRef]

Botez, D.

Daele, P. V.

D. Taillaert, P. Bienstman, T. F. Krauss, P. V. Daele, I. Moerman, S. Verstuyft, K. D. Mesel, and R. Baets, IEEE J.Quantum Electron. 38, 949 (2002).
[CrossRef]

Deliwala, S.

S. Deliwala, “Method for forming passive optical coupling device,” U.S. patent application (January16, 2003).

Dillon, T.

Hagness, S. C.

A. Taflove and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method (Artec House, Norwood, Mass., 2000).

Haruna, M.

H. Nishihara, M. Haruna, and T. Suhara, Optical Integrated Circuits (McGraw-Hill, New York, 1987).

Hunsperge, R. G.

Kazem Shams, M.

Krauss, T. F.

D. Taillaert, P. Bienstman, T. F. Krauss, P. V. Daele, I. Moerman, S. Verstuyft, K. D. Mesel, and R. Baets, IEEE J.Quantum Electron. 38, 949 (2002).
[CrossRef]

Lee, A.

Lin, C.

Mesel, K. D.

D. Taillaert, P. Bienstman, T. F. Krauss, P. V. Daele, I. Moerman, S. Verstuyft, K. D. Mesel, and R. Baets, IEEE J.Quantum Electron. 38, 949 (2002).
[CrossRef]

Moerman, I.

D. Taillaert, P. Bienstman, T. F. Krauss, P. V. Daele, I. Moerman, S. Verstuyft, K. D. Mesel, and R. Baets, IEEE J.Quantum Electron. 38, 949 (2002).
[CrossRef]

Murakowski, J.

Murphy, T. E.

T. E. Murphy, “Design, fabrication and measurement of integrated Bragg grating optical filters,” Ph.D. dissertation (Massachusetts Institute of Technology, Cambridge, Mass., 2001), p. 181.

Nishihara, H.

H. Nishihara, M. Haruna, and T. Suhara, Optical Integrated Circuits (McGraw-Hill, New York, 1987).

Prather, D. W.

Pustai, D.

Suhara, T.

H. Nishihara, M. Haruna, and T. Suhara, Optical Integrated Circuits (McGraw-Hill, New York, 1987).

Sure, A.

Taflove, A.

A. Taflove and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method (Artec House, Norwood, Mass., 2000).

Taillaert, D.

D. Taillaert, P. Bienstman, T. F. Krauss, P. V. Daele, I. Moerman, S. Verstuyft, K. D. Mesel, and R. Baets, IEEE J.Quantum Electron. 38, 949 (2002).
[CrossRef]

Ulrich, R.

Verstuyft, S.

D. Taillaert, P. Bienstman, T. F. Krauss, P. V. Daele, I. Moerman, S. Verstuyft, K. D. Mesel, and R. Baets, IEEE J.Quantum Electron. 38, 949 (2002).
[CrossRef]

Wang, S.

Yariv, A.

Appl. Opt.

IEEE J. Quantum Electron.

A. Yariv, IEEE J. Quantum Electron. QE-9, 919 (1973).
[CrossRef]

IEEE J.Quantum Electron.

D. Taillaert, P. Bienstman, T. F. Krauss, P. V. Daele, I. Moerman, S. Verstuyft, K. D. Mesel, and R. Baets, IEEE J.Quantum Electron. 38, 949 (2002).
[CrossRef]

J. Opt. Soc. Am.

Opt. Express

Opt. Lett.

Other

S. Deliwala, “Method for forming passive optical coupling device,” U.S. patent application (January16, 2003).

H. Nishihara, M. Haruna, and T. Suhara, Optical Integrated Circuits (McGraw-Hill, New York, 1987).

A. Taflove and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method (Artec House, Norwood, Mass., 2000).

T. E. Murphy, “Design, fabrication and measurement of integrated Bragg grating optical filters,” Ph.D. dissertation (Massachusetts Institute of Technology, Cambridge, Mass., 2001), p. 181.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Schematic illustration of our silicon coupler.

Fig. 2
Fig. 2

Finite-difference time-domain simulation of Ez amplitude for the coupler.

Fig. 3
Fig. 3

Coupler fabrication: (a) illustration of polishing, (b) scanning electron microscope picture of a coupler fabricated by direct polishing.

Fig. 4
Fig. 4

Epoxy-bonding machine for fiber-waveguide parallel couplers.

Fig. 5
Fig. 5

Results for light coupled into a tapered waveguide: (a) side view and (b) front view. (c) Spectrum response of our coupler.

Metrics