Abstract

A physical model of an annular-aperture solid immersion lens (SIL) is proposed, and its attractive features are presented numerically with the finite-difference time-domain method. Placing an appropriate annular aperture in front of the SIL shows that the focal depth can evidently be improved, combining the virtues of the annular-aperture technique and the SIL technique. With this proposed method the rigorous distance control condition in related devices can be relaxed, preventing scratches or collisions between the optical head and the recording medium. Potentially, this technique could have great prospects for applications in optical data recording, lithography, and other applications that depend on immersion media to meet the resolution criteria across the image field.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. M. Mansfied and G. S. Kino, Appl. Phys. Lett. 57, 2615 (1990).
    [CrossRef]
  2. B. D. Terris, H. J. Mamin, D. Rugar, W. R. Studenmund, and G. S. Kino, Appl. Phys. Lett. 65, 388 (1994).
    [CrossRef]
  3. E. Betzig, J. K. Trauman, R. Wolfe, E. M. Gyorgy, and O. L. Finn, Appl. Phys. Lett. 61, 142 (1992).
    [CrossRef]
  4. W. T. Welford, J. Opt. Soc. Am. 50, 749 (1960).
  5. H. Wang and F. Gan, Appl. Opt. 41, 5263 (2002).
    [CrossRef] [PubMed]
  6. C. H. Tien, Y. C. Lai, and H. P. D. Shieh, Opt. Eng. 40, 2285 (2001).
    [CrossRef]
  7. T. D. Milster, K. Shimura, J. S. Jo, and K. Hitora, Opt. Lett. 24, 605 (1999).
    [CrossRef]
  8. K. S. Yee, IEEE Trans. Antennas Propag. AP-14, 302 (1966).
  9. S. Y. Hasegawa, N. Aoyama, A. Futamata, and T. Uchiyama, Appl. Opt. 38, 2297 (1999).
    [CrossRef]
  10. B. Richards and E. Wolf, Proc. R. Soc. London Ser. A 253, 358 (1959).
    [CrossRef]
  11. P. Monk and E. Suli, IEEE Trans. Magn. 30, 3200 (1994).
    [CrossRef]

2002

2001

C. H. Tien, Y. C. Lai, and H. P. D. Shieh, Opt. Eng. 40, 2285 (2001).
[CrossRef]

1999

1994

B. D. Terris, H. J. Mamin, D. Rugar, W. R. Studenmund, and G. S. Kino, Appl. Phys. Lett. 65, 388 (1994).
[CrossRef]

P. Monk and E. Suli, IEEE Trans. Magn. 30, 3200 (1994).
[CrossRef]

1992

E. Betzig, J. K. Trauman, R. Wolfe, E. M. Gyorgy, and O. L. Finn, Appl. Phys. Lett. 61, 142 (1992).
[CrossRef]

1990

S. M. Mansfied and G. S. Kino, Appl. Phys. Lett. 57, 2615 (1990).
[CrossRef]

1966

K. S. Yee, IEEE Trans. Antennas Propag. AP-14, 302 (1966).

1960

1959

B. Richards and E. Wolf, Proc. R. Soc. London Ser. A 253, 358 (1959).
[CrossRef]

Aoyama, N.

Betzig, E.

E. Betzig, J. K. Trauman, R. Wolfe, E. M. Gyorgy, and O. L. Finn, Appl. Phys. Lett. 61, 142 (1992).
[CrossRef]

Finn, O. L.

E. Betzig, J. K. Trauman, R. Wolfe, E. M. Gyorgy, and O. L. Finn, Appl. Phys. Lett. 61, 142 (1992).
[CrossRef]

Futamata, A.

Gan, F.

Gyorgy, E. M.

E. Betzig, J. K. Trauman, R. Wolfe, E. M. Gyorgy, and O. L. Finn, Appl. Phys. Lett. 61, 142 (1992).
[CrossRef]

Hasegawa, S. Y.

Hitora, K.

Jo, J. S.

Kino, G. S.

B. D. Terris, H. J. Mamin, D. Rugar, W. R. Studenmund, and G. S. Kino, Appl. Phys. Lett. 65, 388 (1994).
[CrossRef]

S. M. Mansfied and G. S. Kino, Appl. Phys. Lett. 57, 2615 (1990).
[CrossRef]

Lai, Y. C.

C. H. Tien, Y. C. Lai, and H. P. D. Shieh, Opt. Eng. 40, 2285 (2001).
[CrossRef]

Mamin, H. J.

B. D. Terris, H. J. Mamin, D. Rugar, W. R. Studenmund, and G. S. Kino, Appl. Phys. Lett. 65, 388 (1994).
[CrossRef]

Mansfied, S. M.

S. M. Mansfied and G. S. Kino, Appl. Phys. Lett. 57, 2615 (1990).
[CrossRef]

Milster, T. D.

Monk, P.

P. Monk and E. Suli, IEEE Trans. Magn. 30, 3200 (1994).
[CrossRef]

Richards, B.

B. Richards and E. Wolf, Proc. R. Soc. London Ser. A 253, 358 (1959).
[CrossRef]

Rugar, D.

B. D. Terris, H. J. Mamin, D. Rugar, W. R. Studenmund, and G. S. Kino, Appl. Phys. Lett. 65, 388 (1994).
[CrossRef]

Shieh, H. P. D.

C. H. Tien, Y. C. Lai, and H. P. D. Shieh, Opt. Eng. 40, 2285 (2001).
[CrossRef]

Shimura, K.

Studenmund, W. R.

B. D. Terris, H. J. Mamin, D. Rugar, W. R. Studenmund, and G. S. Kino, Appl. Phys. Lett. 65, 388 (1994).
[CrossRef]

Suli, E.

P. Monk and E. Suli, IEEE Trans. Magn. 30, 3200 (1994).
[CrossRef]

Terris, B. D.

B. D. Terris, H. J. Mamin, D. Rugar, W. R. Studenmund, and G. S. Kino, Appl. Phys. Lett. 65, 388 (1994).
[CrossRef]

Tien, C. H.

C. H. Tien, Y. C. Lai, and H. P. D. Shieh, Opt. Eng. 40, 2285 (2001).
[CrossRef]

Trauman, J. K.

E. Betzig, J. K. Trauman, R. Wolfe, E. M. Gyorgy, and O. L. Finn, Appl. Phys. Lett. 61, 142 (1992).
[CrossRef]

Uchiyama, T.

Wang, H.

Welford, W. T.

Wolf, E.

B. Richards and E. Wolf, Proc. R. Soc. London Ser. A 253, 358 (1959).
[CrossRef]

Wolfe, R.

E. Betzig, J. K. Trauman, R. Wolfe, E. M. Gyorgy, and O. L. Finn, Appl. Phys. Lett. 61, 142 (1992).
[CrossRef]

Yee, K. S.

K. S. Yee, IEEE Trans. Antennas Propag. AP-14, 302 (1966).

Appl. Opt.

Appl. Phys. Lett.

S. M. Mansfied and G. S. Kino, Appl. Phys. Lett. 57, 2615 (1990).
[CrossRef]

B. D. Terris, H. J. Mamin, D. Rugar, W. R. Studenmund, and G. S. Kino, Appl. Phys. Lett. 65, 388 (1994).
[CrossRef]

E. Betzig, J. K. Trauman, R. Wolfe, E. M. Gyorgy, and O. L. Finn, Appl. Phys. Lett. 61, 142 (1992).
[CrossRef]

IEEE Trans. Antennas Propag.

K. S. Yee, IEEE Trans. Antennas Propag. AP-14, 302 (1966).

IEEE Trans. Magn.

P. Monk and E. Suli, IEEE Trans. Magn. 30, 3200 (1994).
[CrossRef]

J. Opt. Soc. Am.

Opt. Eng.

C. H. Tien, Y. C. Lai, and H. P. D. Shieh, Opt. Eng. 40, 2285 (2001).
[CrossRef]

Opt. Lett.

Proc. R. Soc. London Ser. A

B. Richards and E. Wolf, Proc. R. Soc. London Ser. A 253, 358 (1959).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

(a) Schematic diagram of an annular-aperture SIL. (b) Structure of the annular aperture.

Fig. 2
Fig. 2

Intensity distributions in the xz plane of (a) an annular-aperture SIL and (b) a conventional SIL.

Fig. 3
Fig. 3

(a) Intensity distributions at different distances from the SIL–air interface. (b) FWHM of the central peak versus distance from the SIL–air interface.

Fig. 4
Fig. 4

(a) Intensity of the central peak versus distance from the SIL–air interface. (b) Intensity distribution at a plane 700 nm from the SIL–air interface.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

E=C0θt02πξ,η,ζf0θ,ϕcos θ1/2×expjk1sxx+syy+szzsin θdθdϕ,
sx=sin θ cos ϕ,  sy=sin θ sin ϕ,  sz=cos ϕ,
ξ=cos θ+sin2 ϕ1-cos θ, η=cos θ-1sin ϕ cos ϕ, ζ=-sin ϕ cos ϕ.
fθ,ϕ=f0θ,ϕfθ,ϕ,
E=C0θt02πξ,η,ζf0θ,ϕcos θ1/2fθ,ϕ×expjk1sxx+syy+szzsin θdθdϕ.
E=C0θt02πξ,η,ζf0θ,ϕcosθ1/2×expjk1sxx+syy+szzsin θdθdϕ0θt02πfθ,ϕexpjk1sxx+syy+szz×sin θdθdϕ=EEerror,

Metrics