Abstract

We discuss the applicability of well-established classical optical fiber theories to holey fibers. By appropriately defining the V parameter, we can easily estimate the fundamental properties of holey fibers, such as effective index, group-velocity dispersion, mode field diameter, beam divergence, and splice loss, through simple empirical expressions without the need for heavy numerical computations. We confirm the validity of the V parameter defined here by comparing the calculated results with the earlier experimental and numerical results.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. N. A. Mortensen, J. R. Folkenberg, M. D. Nielsen, and K. P. Hansen, Opt. Lett. 28, 1879 (2003).
    [CrossRef] [PubMed]
  2. M. Koshiba, IEICE Trans. Electron. E85-C, 881 (2002).
  3. F. Brechet, J. Marcou, D. Pagnoux, and P. Roy, Opt. Fiber Technol. 6, 181 (2000).
    [CrossRef]
  4. J. R. Folkenberg, N. A. Mortensen, K. P. Hansen, T. P. Hansen, H. R. Simonsen, and C. Jakobsen, Opt. Lett. 28, 1882 (2003).
    [CrossRef] [PubMed]
  5. K. Saitoh and M. Koshiba, IEEE J. Quantum Electron. 38, 927 (2002).
    [CrossRef]
  6. D. Gloge, Appl. Opt. 10, 2252 (1971).
    [CrossRef] [PubMed]
  7. J. Lægsgaard, A. Bjarklev, and S. E. B. Libori, J. Opt. Soc. Am. B 20, 443 (2003).
    [CrossRef]
  8. D. Marcuse, Bell Syst. Tech. J. 56, 703 (1977).
    [CrossRef]
  9. M. D. Nielsen, J. P. Folkenberg, N. A. Mortensen, and A. Bjarklev, Opt. Express 12, 430 (2004), http://www.opticsexpress.org .
    [CrossRef] [PubMed]
  10. M. J. Gander, R. McBride, J. C. D. Jones, T. A. Birks, J. C. Knight, P. St. J. Russell, P. M. Blanchard, J. G. Burnett, and A. H. Greenaway, Opt. Lett. 24, 1017 (1999).
    [CrossRef]
  11. N. A. Mortensen, J. R. Folken, P. M. W. Skovgaad, and J. Broeng, IEEE Photon. Technol. Lett. 14, 1094 (2002).
    [CrossRef]
  12. Y. L. Hoo, W. Jin, J. Ju, and H. L. Ho, Microwave Opt. Technol. Lett. 40, 378 (2004).
    [CrossRef]

2004 (2)

2003 (3)

2002 (3)

K. Saitoh and M. Koshiba, IEEE J. Quantum Electron. 38, 927 (2002).
[CrossRef]

M. Koshiba, IEICE Trans. Electron. E85-C, 881 (2002).

N. A. Mortensen, J. R. Folken, P. M. W. Skovgaad, and J. Broeng, IEEE Photon. Technol. Lett. 14, 1094 (2002).
[CrossRef]

2000 (1)

F. Brechet, J. Marcou, D. Pagnoux, and P. Roy, Opt. Fiber Technol. 6, 181 (2000).
[CrossRef]

1999 (1)

1977 (1)

D. Marcuse, Bell Syst. Tech. J. 56, 703 (1977).
[CrossRef]

1971 (1)

Birks, T. A.

Bjarklev, A.

Blanchard, P. M.

Brechet, F.

F. Brechet, J. Marcou, D. Pagnoux, and P. Roy, Opt. Fiber Technol. 6, 181 (2000).
[CrossRef]

Broeng, J.

N. A. Mortensen, J. R. Folken, P. M. W. Skovgaad, and J. Broeng, IEEE Photon. Technol. Lett. 14, 1094 (2002).
[CrossRef]

Burnett, J. G.

Folken, J. R.

N. A. Mortensen, J. R. Folken, P. M. W. Skovgaad, and J. Broeng, IEEE Photon. Technol. Lett. 14, 1094 (2002).
[CrossRef]

Folkenberg, J. P.

Folkenberg, J. R.

Gander, M. J.

Gloge, D.

Greenaway, A. H.

Hansen, K. P.

Hansen, T. P.

Ho, H. L.

Y. L. Hoo, W. Jin, J. Ju, and H. L. Ho, Microwave Opt. Technol. Lett. 40, 378 (2004).
[CrossRef]

Hoo, Y. L.

Y. L. Hoo, W. Jin, J. Ju, and H. L. Ho, Microwave Opt. Technol. Lett. 40, 378 (2004).
[CrossRef]

Jakobsen, C.

Jin, W.

Y. L. Hoo, W. Jin, J. Ju, and H. L. Ho, Microwave Opt. Technol. Lett. 40, 378 (2004).
[CrossRef]

Jones, J. C. D.

Ju, J.

Y. L. Hoo, W. Jin, J. Ju, and H. L. Ho, Microwave Opt. Technol. Lett. 40, 378 (2004).
[CrossRef]

Knight, J. C.

Koshiba, M.

K. Saitoh and M. Koshiba, IEEE J. Quantum Electron. 38, 927 (2002).
[CrossRef]

M. Koshiba, IEICE Trans. Electron. E85-C, 881 (2002).

Lægsgaard, J.

Libori, S. E. B.

Marcou, J.

F. Brechet, J. Marcou, D. Pagnoux, and P. Roy, Opt. Fiber Technol. 6, 181 (2000).
[CrossRef]

Marcuse, D.

D. Marcuse, Bell Syst. Tech. J. 56, 703 (1977).
[CrossRef]

McBride, R.

Mortensen, N. A.

Nielsen, M. D.

Pagnoux, D.

F. Brechet, J. Marcou, D. Pagnoux, and P. Roy, Opt. Fiber Technol. 6, 181 (2000).
[CrossRef]

Roy, P.

F. Brechet, J. Marcou, D. Pagnoux, and P. Roy, Opt. Fiber Technol. 6, 181 (2000).
[CrossRef]

Russell, P. St. J.

Saitoh, K.

K. Saitoh and M. Koshiba, IEEE J. Quantum Electron. 38, 927 (2002).
[CrossRef]

Simonsen, H. R.

Skovgaad, P. M. W.

N. A. Mortensen, J. R. Folken, P. M. W. Skovgaad, and J. Broeng, IEEE Photon. Technol. Lett. 14, 1094 (2002).
[CrossRef]

Appl. Opt. (1)

Bell Syst. Tech. J. (1)

D. Marcuse, Bell Syst. Tech. J. 56, 703 (1977).
[CrossRef]

IEEE J. Quantum Electron. (1)

K. Saitoh and M. Koshiba, IEEE J. Quantum Electron. 38, 927 (2002).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

N. A. Mortensen, J. R. Folken, P. M. W. Skovgaad, and J. Broeng, IEEE Photon. Technol. Lett. 14, 1094 (2002).
[CrossRef]

IEICE Trans. Electron. (1)

M. Koshiba, IEICE Trans. Electron. E85-C, 881 (2002).

J. Opt. Soc. Am. B (1)

Microwave Opt. Technol. Lett. (1)

Y. L. Hoo, W. Jin, J. Ju, and H. L. Ho, Microwave Opt. Technol. Lett. 40, 378 (2004).
[CrossRef]

Opt. Express (1)

Opt. Fiber Technol. (1)

F. Brechet, J. Marcou, D. Pagnoux, and P. Roy, Opt. Fiber Technol. 6, 181 (2000).
[CrossRef]

Opt. Lett. (3)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Relative cutoff wavelength λ/Λ as a function of relative hole diameter d/Λ; 4 refers to Ref. 4.

Fig. 2
Fig. 2

Effective index neff as a function of relative wavelength λ/Λ.

Fig. 3
Fig. 3

Dispersion parameter as a function of wavelength for (a) Λ=2.0 µm and (b) Λ=3.0 µm. Dashed curves, results of Eq. (7); dotted curves, results including the material dispersion in the calculation of neff.

Fig. 4
Fig. 4

MFD as a function of wavelength for HFs fabricated by Crystal Fibre A/S; 9 refers to Ref. 9.

Fig. 5
Fig. 5

Beam divergence as a function of wavelength; 10 and 11 refer to Refs. 10 and 11.

Fig. 6
Fig. 6

Splice losses as a function of hole pitch at 1.55 µm; 12 refers to Ref. 12.

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

V=2πλanco2-ncl2=U2+W2,
U=2πλanco2-neff2,
W=2πλaneff2-ncl2,
Veff=2πλΛneff2-nFSM2,
Veff=2πλaeffnco2-nFSM2,
beff=neff2-nFSM2nco2-nFSM2=1-1+21+4+Veff41/42,
D=-λcd2neffdλ2+Dm,
weffaeff=0.65+1.619Veff3/2+2.879Veff6,
θ=tan-1 λπweff,
αS=-20 log10 2weffwSMFweff2+wSMF2,

Metrics