Abstract

Novel devices for converting a linear polarization state to radial or azimuthal polarization states are realized by use of space-variant inhomogeneous media on a subwavelength scale. The two designs presented use form birefringence to locally transform the polarization state. The devices are fabricated in a GaAs substrate for operation in the far-infrared wavelength range. The experimental characterization is in good agreement with the designs, demonstrating high conversion efficiency.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. I. Richter, P. C. Sun, F. Xu, and Y. Fainman, Appl. Opt. 34, 2421 (1995).
    [CrossRef] [PubMed]
  2. F. Xu, R. Tyan, P. C. Sun, C. Cheng, A. Scherer, and Y. Fainman, Opt. Lett. 20, 2457 (1995).
    [CrossRef]
  3. C. Gu and P. Yeh, Opt. Lett. 21, 504 (1996).
    [CrossRef] [PubMed]
  4. U. Levy and Y. Fainman, J. Opt. Soc. Am. A 21, 881 (2004).
    [CrossRef]
  5. R. Tyan, P. C. Sun, A. Scherer, and Y. Fainman, Opt. Lett. 21, 761 (1996).
    [CrossRef] [PubMed]
  6. R. Tyan, A. Salvekar, C. Cheng, A. Scherer, F. Xu, P. C. Sun, and Y. Fainman, J. Opt. Soc. Am. A 14, 1627 (1997).
    [CrossRef]
  7. F. Xu, R. Tyan, P. C. Sun, Y. Fainman, C. Cheng, and A. Scherer, Opt. Lett. 21, 1513 (1996).
    [CrossRef] [PubMed]
  8. A. V. Nesterov and V. G. Niziev, J. Phys. D 33, 1817 (2000).
    [CrossRef]
  9. S. Quabis, R. Dorn, M. Eberler, O. Glockl, and G. Leuchs, Opt. Commun. 179, 1 (2000).
    [CrossRef]
  10. S. C. Tidwell, D. H. Ford, and W. D. Kimura, Appl. Opt. 29, 2234 (1990).
    [CrossRef] [PubMed]
  11. M. Stalder and M. Schadt, Opt. Lett. 21, 1948 (1996).
    [CrossRef] [PubMed]
  12. Z. Bomzon, G. Biener, V. Kleiner, and E. Hasman, Opt. Lett. 27, 285 (2002).
    [CrossRef]
  13. M. G. Moharam and T. K. Gaylord, J. Opt. Soc. Am. 72, 1385 (1982).

2004

2002

2000

A. V. Nesterov and V. G. Niziev, J. Phys. D 33, 1817 (2000).
[CrossRef]

S. Quabis, R. Dorn, M. Eberler, O. Glockl, and G. Leuchs, Opt. Commun. 179, 1 (2000).
[CrossRef]

1997

1996

1995

1990

1982

Biener, G.

Bomzon, Z.

Cheng, C.

Dorn, R.

S. Quabis, R. Dorn, M. Eberler, O. Glockl, and G. Leuchs, Opt. Commun. 179, 1 (2000).
[CrossRef]

Eberler, M.

S. Quabis, R. Dorn, M. Eberler, O. Glockl, and G. Leuchs, Opt. Commun. 179, 1 (2000).
[CrossRef]

Fainman, Y.

Ford, D. H.

Gaylord, T. K.

Glockl, O.

S. Quabis, R. Dorn, M. Eberler, O. Glockl, and G. Leuchs, Opt. Commun. 179, 1 (2000).
[CrossRef]

Gu, C.

Hasman, E.

Kimura, W. D.

Kleiner, V.

Leuchs, G.

S. Quabis, R. Dorn, M. Eberler, O. Glockl, and G. Leuchs, Opt. Commun. 179, 1 (2000).
[CrossRef]

Levy, U.

Moharam, M. G.

Nesterov, A. V.

A. V. Nesterov and V. G. Niziev, J. Phys. D 33, 1817 (2000).
[CrossRef]

Niziev, V. G.

A. V. Nesterov and V. G. Niziev, J. Phys. D 33, 1817 (2000).
[CrossRef]

Quabis, S.

S. Quabis, R. Dorn, M. Eberler, O. Glockl, and G. Leuchs, Opt. Commun. 179, 1 (2000).
[CrossRef]

Richter, I.

I. Richter, P. C. Sun, F. Xu, and Y. Fainman, Appl. Opt. 34, 2421 (1995).
[CrossRef] [PubMed]

Salvekar, A.

Schadt, M.

Scherer, A.

Stalder, M.

Sun, P. C.

Tidwell, S. C.

Tyan, R.

Xu, F.

Yeh, P.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Schematic diagram of the polarization transformation: (a) geometrical definitions, (b) radial polarization state, (c) azimuthal polarization state.

Fig. 2
Fig. 2

Unscaled image of the designed polarization transformer elements: (a) element with period size varying along the radial axis, (b) element with period size varying along the tangential axis, (c) element constructed by using a symmetric version of the tangential design.

Fig. 3
Fig. 3

Scanning electron microscope photograph of the fabricated polarization transformer element: (a) cross section, (b) enlarged side view.

Fig. 4
Fig. 4

Experimentally obtained image of the polarization transformer element illuminated by a linearly polarized beam. A cross polarizer is placed behind the element. (a) Design based on Fig. 2(a). The element was aligned with its horizontal axis parallel to the direction of the linearly polarized incident field. (b) Design based on Fig. 2(c). The element was aligned with its horizontal axis perpendicular to the direction of the linearly polarized incident field.

Fig. 5
Fig. 5

Quantitative characterization of the designs presented in (a) Figs. 2(a) and (b) 2(c) by use of an angular cross section. The experimental data were obtained by digital integration across the radial coordinate of Figs. 4(a) and 4(b), respectively. The calculated curves were obtained with Eqs. (4) and (5).

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

Kg=2πdx,ycosθ2xˆ+sinθ2yˆ=2πdr,θcosθ2rˆ-sinθ2θˆ,
Kg=2πa0rcosθ2rˆ-sinθ2θˆ,
Kg=2πd0cosθ2cosθ2rˆ-sinθ2θˆ,
Ir=EoutEout*=sin2θ,
Iθ=EoutEout*=cos2θ
P=0001
Rθ=cos θsin θ-sin θcos θ

Metrics