Abstract

We emphasize that the visibility of interference fringes is not an appropriate characteristic for the electromagnetic degree of coherence. Our definition is consistent with the notions of complete coherence. All points put forward in the Comment were already noted in our previous publication [Opt. Express 11, 1137 (2003)].

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. Wolf, Opt. Lett. 29, 1712 (2004).
    [Crossref]
  2. T. Setälä, J. Tervo, and A. T. Friberg, Opt. Lett. 29, 328 (2004).
    [Crossref]
  3. J. Tervo, T. Setälä, and A. T. Friberg, Opt. Express 11, 1137 (2003), http://www.opticsexpress.org .
    [Crossref] [PubMed]
  4. F. Zernike, Physica 5, 785 (1938).
  5. R. J. Glauber, Phys. Rev. 130, 2529 (1963).
  6. E. Wolf, J. Mod. Opt. 51, 757 (2004).
    [Crossref]
  7. L. Mandel and E. Wolf, Opt. Commun. 36, 247 (1981).
    [Crossref]
  8. J. Tervo, T. Setälä, and A. T. Friberg, in Frontiers in Optics/Laser Science XIX (Optical Society of America, Washington, D.C., 2003), paper ThB6.
  9. H. Roychowdhury and E. Wolf, Opt. Commun. 226, 57 (2003).
    [Crossref]
  10. Equation (13) in Ref. 9 is incorrect: All that can be obtained from the Hermiticity relation Wijr1,r2,ω=Wji*r2,r1,ω, i,j=x,y, and the knowledge of Wxyr1,r2,ω is the value of Wyxr2,r1,ω. Since in general Wijr1,r2,ω≠Wji*r1,r2,ω, the element Wyxr1,r2,ω requires a separate measurement.
  11. F. Gori, Opt. Lett. 23, 241 (1998).
    [Crossref]
  12. E. Wolf, Phys. Lett. A 312, 263 (2003).
    [Crossref]
  13. In Ref. 12 the degree of coherence is denoted by μr1,r2,ω, but to avoid confusion, here we call it ηr1,r2,ω.
  14. B. Karczewski, Phys. Lett. 5, 191 (1963).
    [Crossref]
  15. B. Karczewski, Nuovo Cimento 30, 906 (1963).
    [Crossref]
  16. More generally, the same result holds for any field in which the x components at r1 and r2 are equal and the y components are negatives of each other, regardless of the forms of the x and y components or their correlations.

2004 (3)

2003 (3)

J. Tervo, T. Setälä, and A. T. Friberg, Opt. Express 11, 1137 (2003), http://www.opticsexpress.org .
[Crossref] [PubMed]

H. Roychowdhury and E. Wolf, Opt. Commun. 226, 57 (2003).
[Crossref]

E. Wolf, Phys. Lett. A 312, 263 (2003).
[Crossref]

1998 (1)

1981 (1)

L. Mandel and E. Wolf, Opt. Commun. 36, 247 (1981).
[Crossref]

1963 (3)

R. J. Glauber, Phys. Rev. 130, 2529 (1963).

B. Karczewski, Phys. Lett. 5, 191 (1963).
[Crossref]

B. Karczewski, Nuovo Cimento 30, 906 (1963).
[Crossref]

1938 (1)

F. Zernike, Physica 5, 785 (1938).

Friberg, A. T.

T. Setälä, J. Tervo, and A. T. Friberg, Opt. Lett. 29, 328 (2004).
[Crossref]

J. Tervo, T. Setälä, and A. T. Friberg, Opt. Express 11, 1137 (2003), http://www.opticsexpress.org .
[Crossref] [PubMed]

J. Tervo, T. Setälä, and A. T. Friberg, in Frontiers in Optics/Laser Science XIX (Optical Society of America, Washington, D.C., 2003), paper ThB6.

Glauber, R. J.

R. J. Glauber, Phys. Rev. 130, 2529 (1963).

Gori, F.

Karczewski, B.

B. Karczewski, Phys. Lett. 5, 191 (1963).
[Crossref]

B. Karczewski, Nuovo Cimento 30, 906 (1963).
[Crossref]

Mandel, L.

L. Mandel and E. Wolf, Opt. Commun. 36, 247 (1981).
[Crossref]

Roychowdhury, H.

H. Roychowdhury and E. Wolf, Opt. Commun. 226, 57 (2003).
[Crossref]

Setälä, T.

T. Setälä, J. Tervo, and A. T. Friberg, Opt. Lett. 29, 328 (2004).
[Crossref]

J. Tervo, T. Setälä, and A. T. Friberg, Opt. Express 11, 1137 (2003), http://www.opticsexpress.org .
[Crossref] [PubMed]

J. Tervo, T. Setälä, and A. T. Friberg, in Frontiers in Optics/Laser Science XIX (Optical Society of America, Washington, D.C., 2003), paper ThB6.

Tervo, J.

T. Setälä, J. Tervo, and A. T. Friberg, Opt. Lett. 29, 328 (2004).
[Crossref]

J. Tervo, T. Setälä, and A. T. Friberg, Opt. Express 11, 1137 (2003), http://www.opticsexpress.org .
[Crossref] [PubMed]

J. Tervo, T. Setälä, and A. T. Friberg, in Frontiers in Optics/Laser Science XIX (Optical Society of America, Washington, D.C., 2003), paper ThB6.

Wolf, E.

E. Wolf, J. Mod. Opt. 51, 757 (2004).
[Crossref]

E. Wolf, Opt. Lett. 29, 1712 (2004).
[Crossref]

H. Roychowdhury and E. Wolf, Opt. Commun. 226, 57 (2003).
[Crossref]

E. Wolf, Phys. Lett. A 312, 263 (2003).
[Crossref]

L. Mandel and E. Wolf, Opt. Commun. 36, 247 (1981).
[Crossref]

Zernike, F.

F. Zernike, Physica 5, 785 (1938).

J. Mod. Opt. (1)

E. Wolf, J. Mod. Opt. 51, 757 (2004).
[Crossref]

Nuovo Cimento (1)

B. Karczewski, Nuovo Cimento 30, 906 (1963).
[Crossref]

Opt. Commun. (2)

L. Mandel and E. Wolf, Opt. Commun. 36, 247 (1981).
[Crossref]

H. Roychowdhury and E. Wolf, Opt. Commun. 226, 57 (2003).
[Crossref]

Opt. Express (1)

Opt. Lett. (3)

Phys. Lett. (1)

B. Karczewski, Phys. Lett. 5, 191 (1963).
[Crossref]

Phys. Lett. A (1)

E. Wolf, Phys. Lett. A 312, 263 (2003).
[Crossref]

Phys. Rev. (1)

R. J. Glauber, Phys. Rev. 130, 2529 (1963).

Physica (1)

F. Zernike, Physica 5, 785 (1938).

Other (4)

J. Tervo, T. Setälä, and A. T. Friberg, in Frontiers in Optics/Laser Science XIX (Optical Society of America, Washington, D.C., 2003), paper ThB6.

In Ref. 12 the degree of coherence is denoted by μr1,r2,ω, but to avoid confusion, here we call it ηr1,r2,ω.

Equation (13) in Ref. 9 is incorrect: All that can be obtained from the Hermiticity relation Wijr1,r2,ω=Wji*r2,r1,ω, i,j=x,y, and the knowledge of Wxyr1,r2,ω is the value of Wyxr2,r1,ω. Since in general Wijr1,r2,ω≠Wji*r1,r2,ω, the element Wyxr1,r2,ω requires a separate measurement.

More generally, the same result holds for any field in which the x components at r1 and r2 are equal and the y components are negatives of each other, regardless of the forms of the x and y components or their correlations.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Equations (1)

Equations on this page are rendered with MathJax. Learn more.

μr1,r2,ω=Wxxr1,r2,ωWxxr1,r1,ω1/2Wxxr2,r2,ω1/2.

Metrics