Abstract

Lasing has been observed in optically pumped 4-dicyanomethylene-2-methyl-6-(p-dimethylaminostyrl)-4H-pyran-doped poly(methyl methacrylate) square-shaped micropillars that allow four-bounce closed and open ray orbits with internal incident angle θinc>θc (the critical angle for total internal reflection) and with the associated surface waves that emit at the four corners. We also detect strongly TE-polarized and spatially varying emission from the square sidewalls that is due to leaky open ray orbits with θinc near but less than θc for two of the four bounces. By selectively pumping the square microcavity with a stripe-shaped beam, we excite different four-bounce ray orbits.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. M. K. Thiyagarajan, D. A. Cohen, A. F. J. Levi, S. Ryu, R. Li, and P. D. Dapkus, Electron. Lett. 35, 1253 (1999).
    [Crossref]
  2. B. E. Little, J. S. Foresi, G. Steinmeyer, E. R. Thoen, S. T. Chu, H. A. Haus, E. P. Ippen, L. C. Kimerling, and W. Greene, IEEE Photon. Technol. Lett. 10, 549 (1998).
    [Crossref]
  3. A. W. Poon, F. Courvoisier, and R. K. Chang, Opt. Lett. 26, 9 (2001).
  4. H. Han, D. V. Forbes, and J. J. Coleman, IEEE J. Quantum Electron. 31, 1994 (1995).
    [Crossref]
  5. M. Born and E. Wolf, Principles of Optics, 7th ed. (Cambridge U. Press, Cambridge, 1999), Chap. 3 and App. VI.
    [Crossref]

2001 (1)

A. W. Poon, F. Courvoisier, and R. K. Chang, Opt. Lett. 26, 9 (2001).

1999 (1)

S. M. K. Thiyagarajan, D. A. Cohen, A. F. J. Levi, S. Ryu, R. Li, and P. D. Dapkus, Electron. Lett. 35, 1253 (1999).
[Crossref]

1998 (1)

B. E. Little, J. S. Foresi, G. Steinmeyer, E. R. Thoen, S. T. Chu, H. A. Haus, E. P. Ippen, L. C. Kimerling, and W. Greene, IEEE Photon. Technol. Lett. 10, 549 (1998).
[Crossref]

1995 (1)

H. Han, D. V. Forbes, and J. J. Coleman, IEEE J. Quantum Electron. 31, 1994 (1995).
[Crossref]

Born, M.

M. Born and E. Wolf, Principles of Optics, 7th ed. (Cambridge U. Press, Cambridge, 1999), Chap. 3 and App. VI.
[Crossref]

Chang, R. K.

A. W. Poon, F. Courvoisier, and R. K. Chang, Opt. Lett. 26, 9 (2001).

Chu, S. T.

B. E. Little, J. S. Foresi, G. Steinmeyer, E. R. Thoen, S. T. Chu, H. A. Haus, E. P. Ippen, L. C. Kimerling, and W. Greene, IEEE Photon. Technol. Lett. 10, 549 (1998).
[Crossref]

Cohen, D. A.

S. M. K. Thiyagarajan, D. A. Cohen, A. F. J. Levi, S. Ryu, R. Li, and P. D. Dapkus, Electron. Lett. 35, 1253 (1999).
[Crossref]

Coleman, J. J.

H. Han, D. V. Forbes, and J. J. Coleman, IEEE J. Quantum Electron. 31, 1994 (1995).
[Crossref]

Courvoisier, F.

A. W. Poon, F. Courvoisier, and R. K. Chang, Opt. Lett. 26, 9 (2001).

Dapkus, P. D.

S. M. K. Thiyagarajan, D. A. Cohen, A. F. J. Levi, S. Ryu, R. Li, and P. D. Dapkus, Electron. Lett. 35, 1253 (1999).
[Crossref]

Forbes, D. V.

H. Han, D. V. Forbes, and J. J. Coleman, IEEE J. Quantum Electron. 31, 1994 (1995).
[Crossref]

Foresi, J. S.

B. E. Little, J. S. Foresi, G. Steinmeyer, E. R. Thoen, S. T. Chu, H. A. Haus, E. P. Ippen, L. C. Kimerling, and W. Greene, IEEE Photon. Technol. Lett. 10, 549 (1998).
[Crossref]

Greene, W.

B. E. Little, J. S. Foresi, G. Steinmeyer, E. R. Thoen, S. T. Chu, H. A. Haus, E. P. Ippen, L. C. Kimerling, and W. Greene, IEEE Photon. Technol. Lett. 10, 549 (1998).
[Crossref]

Han, H.

H. Han, D. V. Forbes, and J. J. Coleman, IEEE J. Quantum Electron. 31, 1994 (1995).
[Crossref]

Haus, H. A.

B. E. Little, J. S. Foresi, G. Steinmeyer, E. R. Thoen, S. T. Chu, H. A. Haus, E. P. Ippen, L. C. Kimerling, and W. Greene, IEEE Photon. Technol. Lett. 10, 549 (1998).
[Crossref]

Ippen, E. P.

B. E. Little, J. S. Foresi, G. Steinmeyer, E. R. Thoen, S. T. Chu, H. A. Haus, E. P. Ippen, L. C. Kimerling, and W. Greene, IEEE Photon. Technol. Lett. 10, 549 (1998).
[Crossref]

Kimerling, L. C.

B. E. Little, J. S. Foresi, G. Steinmeyer, E. R. Thoen, S. T. Chu, H. A. Haus, E. P. Ippen, L. C. Kimerling, and W. Greene, IEEE Photon. Technol. Lett. 10, 549 (1998).
[Crossref]

Levi, A. F. J.

S. M. K. Thiyagarajan, D. A. Cohen, A. F. J. Levi, S. Ryu, R. Li, and P. D. Dapkus, Electron. Lett. 35, 1253 (1999).
[Crossref]

Li, R.

S. M. K. Thiyagarajan, D. A. Cohen, A. F. J. Levi, S. Ryu, R. Li, and P. D. Dapkus, Electron. Lett. 35, 1253 (1999).
[Crossref]

Little, B. E.

B. E. Little, J. S. Foresi, G. Steinmeyer, E. R. Thoen, S. T. Chu, H. A. Haus, E. P. Ippen, L. C. Kimerling, and W. Greene, IEEE Photon. Technol. Lett. 10, 549 (1998).
[Crossref]

Poon, A. W.

A. W. Poon, F. Courvoisier, and R. K. Chang, Opt. Lett. 26, 9 (2001).

Ryu, S.

S. M. K. Thiyagarajan, D. A. Cohen, A. F. J. Levi, S. Ryu, R. Li, and P. D. Dapkus, Electron. Lett. 35, 1253 (1999).
[Crossref]

Steinmeyer, G.

B. E. Little, J. S. Foresi, G. Steinmeyer, E. R. Thoen, S. T. Chu, H. A. Haus, E. P. Ippen, L. C. Kimerling, and W. Greene, IEEE Photon. Technol. Lett. 10, 549 (1998).
[Crossref]

Thiyagarajan, S. M. K.

S. M. K. Thiyagarajan, D. A. Cohen, A. F. J. Levi, S. Ryu, R. Li, and P. D. Dapkus, Electron. Lett. 35, 1253 (1999).
[Crossref]

Thoen, E. R.

B. E. Little, J. S. Foresi, G. Steinmeyer, E. R. Thoen, S. T. Chu, H. A. Haus, E. P. Ippen, L. C. Kimerling, and W. Greene, IEEE Photon. Technol. Lett. 10, 549 (1998).
[Crossref]

Wolf, E.

M. Born and E. Wolf, Principles of Optics, 7th ed. (Cambridge U. Press, Cambridge, 1999), Chap. 3 and App. VI.
[Crossref]

Electron. Lett. (1)

S. M. K. Thiyagarajan, D. A. Cohen, A. F. J. Levi, S. Ryu, R. Li, and P. D. Dapkus, Electron. Lett. 35, 1253 (1999).
[Crossref]

IEEE J. Quantum Electron. (1)

H. Han, D. V. Forbes, and J. J. Coleman, IEEE J. Quantum Electron. 31, 1994 (1995).
[Crossref]

IEEE Photon. Technol. Lett. (1)

B. E. Little, J. S. Foresi, G. Steinmeyer, E. R. Thoen, S. T. Chu, H. A. Haus, E. P. Ippen, L. C. Kimerling, and W. Greene, IEEE Photon. Technol. Lett. 10, 549 (1998).
[Crossref]

Opt. Lett. (1)

A. W. Poon, F. Courvoisier, and R. K. Chang, Opt. Lett. 26, 9 (2001).

Other (1)

M. Born and E. Wolf, Principles of Optics, 7th ed. (Cambridge U. Press, Cambridge, 1999), Chap. 3 and App. VI.
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

(a) Setup for optical pumping. Emission from a microcavity imaged onto an intensified charge-coupled device (ICCD) camera (spectrograph) for an image (spectral) profile. Inset, PMMA:DCM sample layers. (b) Diagram of angles θinc,θt, and θICCD.

Fig. 2
Fig. 2

Corner emission spectra of (a) 100- and (b) 150µm squares. FSRs Δλ=0.80±0.04 nm (a=100 µm) and Δλ=0.54±0.02 nm (a=150 µm) agree well with closed ray orbits. The Q factor for a 100µm square is Q>103. The Q value of the larger square cannot be measured because of limited spectrometer resolution. Inset, square with a closed ray orbit relative to the ICCD.

Fig. 3
Fig. 3

(a) Far-field pattern of the a=244µm square, showing refractive emission from sidewalls peaked at θICCD21°. The intensity decreases as θICCD approaches θB=34°. Inset, square with open ray orbit θinc45°, relative to the ICCD. (b) Image profile at θICCD=21°. Discrete spatial emission peaks from various sidewall positions for TE polarization. TM emission is highly suppressed.

Fig. 4
Fig. 4

Image profile at θICCD=21° of the a=244µm square, showing sidewall emission when the square is selectively pumped by linear beams of various widths (A, dotted and B, dashed curves) and flood pumped (C, solid curve). Intensity modulation extends throughout the sidewall as the pump beam’s width increases. The orientation of the square with a laser beam, denoted by the shaded areas, selectively pumping the θinc=39° ray trajectories shown.

Metrics