Abstract

We experimentally demonstrate a novel silicon waveguide structure for guiding and confining light in nanometer-wide low-refractive-index material. The optical field in the low-index material is enhanced because of the discontinuity of the electric field at high-index-contrast interfaces. We measure a 30% reduction of the effective index of light propagating in the novel structure due to the presence of the nanometer-wide low-index region, evidencing the guiding and confinement of light in the low-index material. We fabricate ring resonators based on the structure and show that the structure can be implemented in highly integrated photonics.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. G. Johnson, M. Ibanescu, M. Skorobogatiy, O. Weisberg, T. D. Engeness, M. Soljacic, S. A. Jacobs, J. D. Joannopoulos, and Y. Fink, Opt. Express 9, 748 (2001), http://www.opticsexpress.org .
    [CrossRef]
  2. H. Schmidt, Y. Dongliang, and A. Hawkins, in Integrated Photonics Research, Postconference Digest Vol. 91 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2003), paper ItuC2.
  3. R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. St. J. Russel, P. J. Roberts, and D. C. Allan, Science 285, 1537 (1999).
    [CrossRef]
  4. V. R. Almeida, Q. Xu, C. A. Barrios, R. R. Panepucci, and M. Lipson, Opt. Lett. 29, 1209 (2004).
    [CrossRef] [PubMed]
  5. C. L. Xu, W. P. Huang, M. S. Stern, and S. K. Chaudhuri, IEE Proc. Optoelectron. 141, 281 (1994).
    [CrossRef]
  6. C. R. Pollock, Fundamentals of Optoelectronics (Richard D. Irwin, Burr Ridge, Ill., 1995).
  7. S. Morasca, F. Pozzi, and C. De Bernardi, IEEE Photon. Technol. Lett. 5, 40 (1993).
    [CrossRef]

2004 (1)

2001 (1)

1999 (1)

R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. St. J. Russel, P. J. Roberts, and D. C. Allan, Science 285, 1537 (1999).
[CrossRef]

1994 (1)

C. L. Xu, W. P. Huang, M. S. Stern, and S. K. Chaudhuri, IEE Proc. Optoelectron. 141, 281 (1994).
[CrossRef]

1993 (1)

S. Morasca, F. Pozzi, and C. De Bernardi, IEEE Photon. Technol. Lett. 5, 40 (1993).
[CrossRef]

Allan, D. C.

R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. St. J. Russel, P. J. Roberts, and D. C. Allan, Science 285, 1537 (1999).
[CrossRef]

Almeida, V. R.

Barrios, C. A.

Birks, T. A.

R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. St. J. Russel, P. J. Roberts, and D. C. Allan, Science 285, 1537 (1999).
[CrossRef]

Chaudhuri, S. K.

C. L. Xu, W. P. Huang, M. S. Stern, and S. K. Chaudhuri, IEE Proc. Optoelectron. 141, 281 (1994).
[CrossRef]

Cregan, R. F.

R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. St. J. Russel, P. J. Roberts, and D. C. Allan, Science 285, 1537 (1999).
[CrossRef]

De Bernardi, C.

S. Morasca, F. Pozzi, and C. De Bernardi, IEEE Photon. Technol. Lett. 5, 40 (1993).
[CrossRef]

Dongliang, Y.

H. Schmidt, Y. Dongliang, and A. Hawkins, in Integrated Photonics Research, Postconference Digest Vol. 91 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2003), paper ItuC2.

Engeness, T. D.

Fink, Y.

Hawkins, A.

H. Schmidt, Y. Dongliang, and A. Hawkins, in Integrated Photonics Research, Postconference Digest Vol. 91 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2003), paper ItuC2.

Huang, W. P.

C. L. Xu, W. P. Huang, M. S. Stern, and S. K. Chaudhuri, IEE Proc. Optoelectron. 141, 281 (1994).
[CrossRef]

Ibanescu, M.

Jacobs, S. A.

Joannopoulos, J. D.

Johnson, S. G.

Knight, J. C.

R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. St. J. Russel, P. J. Roberts, and D. C. Allan, Science 285, 1537 (1999).
[CrossRef]

Lipson, M.

Mangan, B. J.

R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. St. J. Russel, P. J. Roberts, and D. C. Allan, Science 285, 1537 (1999).
[CrossRef]

Morasca, S.

S. Morasca, F. Pozzi, and C. De Bernardi, IEEE Photon. Technol. Lett. 5, 40 (1993).
[CrossRef]

Panepucci, R. R.

Pollock, C. R.

C. R. Pollock, Fundamentals of Optoelectronics (Richard D. Irwin, Burr Ridge, Ill., 1995).

Pozzi, F.

S. Morasca, F. Pozzi, and C. De Bernardi, IEEE Photon. Technol. Lett. 5, 40 (1993).
[CrossRef]

Roberts, P. J.

R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. St. J. Russel, P. J. Roberts, and D. C. Allan, Science 285, 1537 (1999).
[CrossRef]

Russel, P. St. J.

R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. St. J. Russel, P. J. Roberts, and D. C. Allan, Science 285, 1537 (1999).
[CrossRef]

Schmidt, H.

H. Schmidt, Y. Dongliang, and A. Hawkins, in Integrated Photonics Research, Postconference Digest Vol. 91 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2003), paper ItuC2.

Skorobogatiy, M.

Soljacic, M.

Stern, M. S.

C. L. Xu, W. P. Huang, M. S. Stern, and S. K. Chaudhuri, IEE Proc. Optoelectron. 141, 281 (1994).
[CrossRef]

Weisberg, O.

Xu, C. L.

C. L. Xu, W. P. Huang, M. S. Stern, and S. K. Chaudhuri, IEE Proc. Optoelectron. 141, 281 (1994).
[CrossRef]

Xu, Q.

IEE Proc. Optoelectron. (1)

C. L. Xu, W. P. Huang, M. S. Stern, and S. K. Chaudhuri, IEE Proc. Optoelectron. 141, 281 (1994).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

S. Morasca, F. Pozzi, and C. De Bernardi, IEEE Photon. Technol. Lett. 5, 40 (1993).
[CrossRef]

Opt. Express (1)

Opt. Lett. (1)

Science (1)

R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. St. J. Russel, P. J. Roberts, and D. C. Allan, Science 285, 1537 (1999).
[CrossRef]

Other (2)

H. Schmidt, Y. Dongliang, and A. Hawkins, in Integrated Photonics Research, Postconference Digest Vol. 91 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2003), paper ItuC2.

C. R. Pollock, Fundamentals of Optoelectronics (Richard D. Irwin, Burr Ridge, Ill., 1995).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

(a) Schematic of the slot waveguide. (b) Top-view SEM picture of the slot waveguide before deposition of the SiO2 upper cladding.

Fig. 2
Fig. 2

Transverse electric field of the quasi-TE mode in a SOI-based slot waveguide, when wh=218 nm, ws=101 nm, h=247 nm, nH=3.48, nS=1, and nC=1.46. The dimensions are estimated from the cross-sectional SEM picture of the fabricated device. The origin of the coordinate system is located at the center of the waveguide, with a horizontal x axis and a vertical y axis. (a) Three-dimensional profile of the field amplitude. (b) Two-dimensional contours of the logarithm of the normalized field amplitude.

Fig. 3
Fig. 3

Top-view SEM picture of a directional coupler formed by two parallel slot waveguides fabricated on a SOI platform. The picture was taken before deposition of the SiO2 upper cladding.

Fig. 4
Fig. 4

Measured (marks with error bars) and simulated (curves) effective indices of quasi-TE and quasi-TM modes in a conventional and a slot waveguide. The parameters of the slot waveguide used in the simulations are the same as those in Fig. 2, except that ws=0 for the conventional channel waveguide.

Fig. 5
Fig. 5

(a) SEM picture of the slot waveguide ring resonator coupled to a straight slot waveguide. The coupling region is enlarged in the inset. The picture is taken before the deposition of the SiO2 upper cladding. (b) Transmission spectrum Pout/Pin of the coupled slot ring resonator. The positions of the resonances are marked by arrows.

Fig. 6
Fig. 6

Measured (marks with error bars) and simulated (curves) group indices of quasi-TE and quasi-TM modes of the slot waveguide. The parameters of the slot waveguide used in the simulation are the same as those in Fig. 2.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

neffnC2+γ2/k021/2,
ln κd=InarcsinKd1/2/L=-γd+C,

Metrics