Abstract

We propose and demonstrate a new method for fabricating a compact all-fiber spectrometer by using a tilted superstructure fiber grating to couple light out of a fiber core and produce an interference pattern in the near field. The Fourier transform of the interference pattern serves as a direct measurement of the optical input spectrum, and the superstructure grating design offers several degrees of freedom that permit control over the resolution and bandwidth of the spectrometer. For single-wavelength operation, the proposed scheme offers the possibility of making wavelength measurements with picometer-level precision over a broad 80-nm wavelength range while simultaneously providing coarser precision over a 160-nm range.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. Koeppen, J. L. Wagener, T. A. Strasser, and J. DeMarco, presented at the National Fiber Optic Engineers Conference, Orlando, Fla., September 14–17, 1998.
  2. P. S. Westbrook, T. A. Strasser, and T. Erdogan, IEEE Photon. Technol. Lett. 12, 1352 (2000).
    [CrossRef]
  3. B. J. Eggleton, A. Ahuja, P. S. Westbrook, J. A. Rogers, P. Kuo, T. N. Neilsen, and B. Mikklesen, J. Lightwave Technol. 18, 1418 (2000).
    [CrossRef]
  4. H. P. Li, Y. L. Sheng, Y. Li, and J. E. Rothenberg, J. Lightwave Technol. 21, 2074 (2003).
    [CrossRef]
  5. M. Froggat and T. Erdogan, Opt. Lett. 24, 942 (1999).
    [CrossRef]

2003

2000

1999

Ahuja, A.

DeMarco, J.

C. Koeppen, J. L. Wagener, T. A. Strasser, and J. DeMarco, presented at the National Fiber Optic Engineers Conference, Orlando, Fla., September 14–17, 1998.

Eggleton, B. J.

Erdogan, T.

P. S. Westbrook, T. A. Strasser, and T. Erdogan, IEEE Photon. Technol. Lett. 12, 1352 (2000).
[CrossRef]

M. Froggat and T. Erdogan, Opt. Lett. 24, 942 (1999).
[CrossRef]

Froggat, M.

Koeppen, C.

C. Koeppen, J. L. Wagener, T. A. Strasser, and J. DeMarco, presented at the National Fiber Optic Engineers Conference, Orlando, Fla., September 14–17, 1998.

Kuo, P.

Li, H. P.

Li, Y.

Mikklesen, B.

Neilsen, T. N.

Rogers, J. A.

Rothenberg, J. E.

Sheng, Y. L.

Strasser, T. A.

P. S. Westbrook, T. A. Strasser, and T. Erdogan, IEEE Photon. Technol. Lett. 12, 1352 (2000).
[CrossRef]

C. Koeppen, J. L. Wagener, T. A. Strasser, and J. DeMarco, presented at the National Fiber Optic Engineers Conference, Orlando, Fla., September 14–17, 1998.

Wagener, J. L.

C. Koeppen, J. L. Wagener, T. A. Strasser, and J. DeMarco, presented at the National Fiber Optic Engineers Conference, Orlando, Fla., September 14–17, 1998.

Westbrook, P. S.

IEEE Photon. Technol. Lett.

P. S. Westbrook, T. A. Strasser, and T. Erdogan, IEEE Photon. Technol. Lett. 12, 1352 (2000).
[CrossRef]

J. Lightwave Technol.

Opt. Lett.

Other

C. Koeppen, J. L. Wagener, T. A. Strasser, and J. DeMarco, presented at the National Fiber Optic Engineers Conference, Orlando, Fla., September 14–17, 1998.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Fourier-transform spectrometer based on a superstructure grating: (a) a portion of an exemplary grating refractive-index profile in which two closely spaced Fourier components produced a low-frequency beat pattern, (b) a schematic of the proposed device.

Fig. 2
Fig. 2

(a) Spatial frequency and (b) corresponding wavelength resolution as a function of wavelength for a superstructure grating with parameters Λ=0.5506 µm and ΔΛ=0.0010 µm. The wavelength resolution was calculated for a 512-element detector array with 25µm pixels. Kmin and Kmax for such an array are 0.49 and 126 mm-1, respectively.

Fig. 3
Fig. 3

Experimental demonstration of the spectrometer: (a) measured near-field interference pattern for 1550-nm light, (b) fast Fourier transform of the interference pattern for several wavelengths at approximately the same input power, (c) measured and expected dependence of spatial frequency on wavelength, (d) measured spatial frequency for a high-resolution wavelength scan.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

λ/nΛ=1+cos θ,
Iz=I1+I2+2I1I2 cos4π sinΔθ/2z/λ,
Kz=2πΛ3λnΔλ22-λnΛ-1/2.

Metrics