Abstract

A real-time dynamically tunable-focus microlens array made from a polymer–liquid-crystal (LC) composite is demonstrated. The polymer was first patterned in microlens array cavities by lamination, and the LC–monomer mixture was then injected to the molded polymer cavities and finally stabilized by UV light-induced networks. Using this new fabrication method, we demonstrated a lens with a spherical shape and a glazed surface. This LC-based microlens can reach ∼100% light efficiency for linearly polarized light. The saturation voltage of the lens is 60 Vrms, and the response time is 30 ms.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (5)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription