Abstract

A real-time dynamically tunable-focus microlens array made from a polymer–liquid-crystal (LC) composite is demonstrated. The polymer was first patterned in microlens array cavities by lamination, and the LC–monomer mixture was then injected to the molded polymer cavities and finally stabilized by UV light-induced networks. Using this new fabrication method, we demonstrated a lens with a spherical shape and a glazed surface. This LC-based microlens can reach ∼100% light efficiency for linearly polarized light. The saturation voltage of the lens is 60 Vrms, and the response time is 30 ms.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. T. Kowel, D. S. Cleverly, and P. G. Kornreich, Appl. Opt. 23, 278 (1984).
    [CrossRef]
  2. J. S. Patel and K. Rastani, Opt. Lett. 16, 532 (1991).
    [CrossRef] [PubMed]
  3. T. Nose, S. Masuda, and S. Sato, Jpn. J. Appl. Phys. 31, 1643 (1992).
    [CrossRef]
  4. N. A. Riza and M. C. DeJule, Opt. Lett. 19, 1013 (1994).
    [CrossRef]
  5. A. F. Naumov, M. Yu. Loktev, I. R. Guralnik, and G. Vdovin, Opt. Lett. 23, 992 (1998).
    [CrossRef]
  6. T. Nose, S. Masuda, S. Sato, J. Li, L. C. Chien, and P. J. Bos, Opt. Lett. 22, 351 (1997).
    [CrossRef] [PubMed]
  7. W. Klaus, M. Ide, Y. Hayano, S. Morokawa, and Y. Arimoto, Proc. SPIE 3635, 66 (1999).
    [CrossRef]
  8. L. G. Commander, S. E. Day, and D. R. Selviah, Opt. Commun. 177, 157 (2000).
    [CrossRef]
  9. H. Ji, J. Kim, and S. Kumar, Opt. Lett. 28, 1147 (2003).
    [CrossRef] [PubMed]
  10. H. Ren, Y. Fan, S. Gauza, and S. T. Wu, Opt. Commun. 230, 267 (2004).
    [CrossRef]
  11. K. Hamanaka, A. Matsuda, S. Taniguchi, D. Arai, T. Kishimoto, and N. Hirayama, “Method of manufacturing flat plate microlens and flat plate microlens,” U.S. patent 6,437,918 (August 20, 2002).
  12. T. Okamoto, M. Mori, T. Kayasawa, S. Hayakawa, I. Seo, and H. Sato, Appl. Opt. 38, 2991 (1999).
    [CrossRef]
  13. H. Ren and S. T. Wu, Appl. Phys. Lett. 81, 3537 (2002).
    [CrossRef]

2004

H. Ren, Y. Fan, S. Gauza, and S. T. Wu, Opt. Commun. 230, 267 (2004).
[CrossRef]

2003

2002

H. Ren and S. T. Wu, Appl. Phys. Lett. 81, 3537 (2002).
[CrossRef]

2000

L. G. Commander, S. E. Day, and D. R. Selviah, Opt. Commun. 177, 157 (2000).
[CrossRef]

1999

W. Klaus, M. Ide, Y. Hayano, S. Morokawa, and Y. Arimoto, Proc. SPIE 3635, 66 (1999).
[CrossRef]

T. Okamoto, M. Mori, T. Kayasawa, S. Hayakawa, I. Seo, and H. Sato, Appl. Opt. 38, 2991 (1999).
[CrossRef]

1998

1997

1994

1992

T. Nose, S. Masuda, and S. Sato, Jpn. J. Appl. Phys. 31, 1643 (1992).
[CrossRef]

1991

1984

Arai, D.

K. Hamanaka, A. Matsuda, S. Taniguchi, D. Arai, T. Kishimoto, and N. Hirayama, “Method of manufacturing flat plate microlens and flat plate microlens,” U.S. patent 6,437,918 (August 20, 2002).

Arimoto, Y.

W. Klaus, M. Ide, Y. Hayano, S. Morokawa, and Y. Arimoto, Proc. SPIE 3635, 66 (1999).
[CrossRef]

Bos, P. J.

Chien, L. C.

Cleverly, D. S.

Commander, L. G.

L. G. Commander, S. E. Day, and D. R. Selviah, Opt. Commun. 177, 157 (2000).
[CrossRef]

Day, S. E.

L. G. Commander, S. E. Day, and D. R. Selviah, Opt. Commun. 177, 157 (2000).
[CrossRef]

DeJule, M. C.

Fan, Y.

H. Ren, Y. Fan, S. Gauza, and S. T. Wu, Opt. Commun. 230, 267 (2004).
[CrossRef]

Gauza, S.

H. Ren, Y. Fan, S. Gauza, and S. T. Wu, Opt. Commun. 230, 267 (2004).
[CrossRef]

Guralnik, I. R.

Hamanaka, K.

K. Hamanaka, A. Matsuda, S. Taniguchi, D. Arai, T. Kishimoto, and N. Hirayama, “Method of manufacturing flat plate microlens and flat plate microlens,” U.S. patent 6,437,918 (August 20, 2002).

Hayakawa, S.

Hayano, Y.

W. Klaus, M. Ide, Y. Hayano, S. Morokawa, and Y. Arimoto, Proc. SPIE 3635, 66 (1999).
[CrossRef]

Hirayama, N.

K. Hamanaka, A. Matsuda, S. Taniguchi, D. Arai, T. Kishimoto, and N. Hirayama, “Method of manufacturing flat plate microlens and flat plate microlens,” U.S. patent 6,437,918 (August 20, 2002).

Ide, M.

W. Klaus, M. Ide, Y. Hayano, S. Morokawa, and Y. Arimoto, Proc. SPIE 3635, 66 (1999).
[CrossRef]

Ji, H.

Kayasawa, T.

Kim, J.

Kishimoto, T.

K. Hamanaka, A. Matsuda, S. Taniguchi, D. Arai, T. Kishimoto, and N. Hirayama, “Method of manufacturing flat plate microlens and flat plate microlens,” U.S. patent 6,437,918 (August 20, 2002).

Klaus, W.

W. Klaus, M. Ide, Y. Hayano, S. Morokawa, and Y. Arimoto, Proc. SPIE 3635, 66 (1999).
[CrossRef]

Kornreich, P. G.

Kowel, S. T.

Kumar, S.

Li, J.

Loktev, M. Yu.

Masuda, S.

Matsuda, A.

K. Hamanaka, A. Matsuda, S. Taniguchi, D. Arai, T. Kishimoto, and N. Hirayama, “Method of manufacturing flat plate microlens and flat plate microlens,” U.S. patent 6,437,918 (August 20, 2002).

Mori, M.

Morokawa, S.

W. Klaus, M. Ide, Y. Hayano, S. Morokawa, and Y. Arimoto, Proc. SPIE 3635, 66 (1999).
[CrossRef]

Naumov, A. F.

Nose, T.

Okamoto, T.

Patel, J. S.

Rastani, K.

Ren, H.

H. Ren, Y. Fan, S. Gauza, and S. T. Wu, Opt. Commun. 230, 267 (2004).
[CrossRef]

H. Ren and S. T. Wu, Appl. Phys. Lett. 81, 3537 (2002).
[CrossRef]

Riza, N. A.

Sato, H.

Sato, S.

Selviah, D. R.

L. G. Commander, S. E. Day, and D. R. Selviah, Opt. Commun. 177, 157 (2000).
[CrossRef]

Seo, I.

Taniguchi, S.

K. Hamanaka, A. Matsuda, S. Taniguchi, D. Arai, T. Kishimoto, and N. Hirayama, “Method of manufacturing flat plate microlens and flat plate microlens,” U.S. patent 6,437,918 (August 20, 2002).

Vdovin, G.

Wu, S. T.

H. Ren, Y. Fan, S. Gauza, and S. T. Wu, Opt. Commun. 230, 267 (2004).
[CrossRef]

H. Ren and S. T. Wu, Appl. Phys. Lett. 81, 3537 (2002).
[CrossRef]

Appl. Phys. Lett.

H. Ren and S. T. Wu, Appl. Phys. Lett. 81, 3537 (2002).
[CrossRef]

Appl. Opt.

Jpn. J. Appl. Phys.

T. Nose, S. Masuda, and S. Sato, Jpn. J. Appl. Phys. 31, 1643 (1992).
[CrossRef]

Opt. Commun.

L. G. Commander, S. E. Day, and D. R. Selviah, Opt. Commun. 177, 157 (2000).
[CrossRef]

H. Ren, Y. Fan, S. Gauza, and S. T. Wu, Opt. Commun. 230, 267 (2004).
[CrossRef]

Opt. Lett.

Proc. SPIE

W. Klaus, M. Ide, Y. Hayano, S. Morokawa, and Y. Arimoto, Proc. SPIE 3635, 66 (1999).
[CrossRef]

Other

K. Hamanaka, A. Matsuda, S. Taniguchi, D. Arai, T. Kishimoto, and N. Hirayama, “Method of manufacturing flat plate microlens and flat plate microlens,” U.S. patent 6,437,918 (August 20, 2002).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Procedures for fabricating polymer network LC microlens arrays. See text for details on (a)–(d).

Fig. 2
Fig. 2

Interference fringe pattern and imaging properties of the LC microlens arrays observed with a polarized optical microscope when the cell rubbing direction is oriented at (a) π/4, (b) 0, (c) π/2, and (d) 0 with respect to the fast axis of the linear polarizer. The analyzer and the polarizer are crossed.

Fig. 3
Fig. 3

Experimental setup for characterizing LC microlens arrays: ND, neutral-density filter; PL, linear polarizer; L1, imaging lens.

Fig. 4
Fig. 4

(a) Arrays of light spots (left) produced by a 450µm-diameter microlens array with a 480µm pitch. (b) Measured spot intensity profiles for spot A at V=0, 40, 60Vrms.

Fig. 5
Fig. 5

Voltage-dependent focal length of the microlens arrays. The LC used is TL-216, cell gap d=45 µm, and λ=633 nm.

Metrics