Abstract

The efficiency of conventional diffractive optical elements with échelette-type profiles drops rapidly as the illumination wavelength departs from the blaze wavelength. We use high dispersion of artificial materials to synthesize diffractive optical elements that are blazed over a broad spectral range (∼1 octave) or for two different wavelengths.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. J. Swanson, “Binary optics technology: the theory and design of multilevel diffractive optical elements,” MIT Tech. Rep. 854 (Massachusetts Institute of Technology, Cambridge, Mass., 1989).
  2. D. A. Buralli and G. M. Morris, Appl. Opt. 31, 4389 (1992).
    [PubMed]
  3. S. Y. Lin, V. M. Hietala, L. Wang, and E. D. Jones, Opt. Lett. 21, 1771 (1996).
    [CrossRef] [PubMed]
  4. M. Notomi, Phys. Rev. B 62, 10696 (2000).
    [CrossRef]
  5. A. A. Krokhin, P. Halevi, and J. Arriaga, Phys. Rev. B 65, 115208 (2002).
    [CrossRef]
  6. Ph. Lalanne, S. Astilean, P. Chavel, E. Cambril, and H. Launois, Opt. Lett. 23, 1081 (1998).
    [CrossRef]
  7. Ph. Lalanne, S. Astilean, P. Chavel, E. Cambril, and H. Launois, J. Opt. Soc. Am. A 16, 1143 (1999).
    [CrossRef]
  8. F. T. Chen and H. G. Craighhead, Opt. Lett. 20, 121 (1995).
    [CrossRef] [PubMed]
  9. L. Lee, Ph. Lalanne, J. C. Rodier, P. Chavel, E. Cambril, and Y. Chen, J. Opt. A Pure Appl. Opt. 4, S119 (2002).
    [CrossRef]
  10. Ph. Lalanne and D. Lalanne, J. Mod. Opt. 43, 2063 (1996).
    [CrossRef]
  11. L. Li, J. Opt. Soc. Am. A 14, 2758 (1997).
    [CrossRef]

2002

A. A. Krokhin, P. Halevi, and J. Arriaga, Phys. Rev. B 65, 115208 (2002).
[CrossRef]

L. Lee, Ph. Lalanne, J. C. Rodier, P. Chavel, E. Cambril, and Y. Chen, J. Opt. A Pure Appl. Opt. 4, S119 (2002).
[CrossRef]

2000

M. Notomi, Phys. Rev. B 62, 10696 (2000).
[CrossRef]

1999

1998

1997

1996

1995

1992

Arriaga, J.

A. A. Krokhin, P. Halevi, and J. Arriaga, Phys. Rev. B 65, 115208 (2002).
[CrossRef]

Astilean, S.

Buralli, D. A.

Cambril, E.

Chavel, P.

Chen, F. T.

Chen, Y.

L. Lee, Ph. Lalanne, J. C. Rodier, P. Chavel, E. Cambril, and Y. Chen, J. Opt. A Pure Appl. Opt. 4, S119 (2002).
[CrossRef]

Craighhead, H. G.

Halevi, P.

A. A. Krokhin, P. Halevi, and J. Arriaga, Phys. Rev. B 65, 115208 (2002).
[CrossRef]

Hietala, V. M.

Jones, E. D.

Krokhin, A. A.

A. A. Krokhin, P. Halevi, and J. Arriaga, Phys. Rev. B 65, 115208 (2002).
[CrossRef]

Lalanne, D.

Ph. Lalanne and D. Lalanne, J. Mod. Opt. 43, 2063 (1996).
[CrossRef]

Lalanne, Ph.

L. Lee, Ph. Lalanne, J. C. Rodier, P. Chavel, E. Cambril, and Y. Chen, J. Opt. A Pure Appl. Opt. 4, S119 (2002).
[CrossRef]

Ph. Lalanne, S. Astilean, P. Chavel, E. Cambril, and H. Launois, J. Opt. Soc. Am. A 16, 1143 (1999).
[CrossRef]

Ph. Lalanne, S. Astilean, P. Chavel, E. Cambril, and H. Launois, Opt. Lett. 23, 1081 (1998).
[CrossRef]

Ph. Lalanne and D. Lalanne, J. Mod. Opt. 43, 2063 (1996).
[CrossRef]

Launois, H.

Lee, L.

L. Lee, Ph. Lalanne, J. C. Rodier, P. Chavel, E. Cambril, and Y. Chen, J. Opt. A Pure Appl. Opt. 4, S119 (2002).
[CrossRef]

Li, L.

Lin, S. Y.

Morris, G. M.

Notomi, M.

M. Notomi, Phys. Rev. B 62, 10696 (2000).
[CrossRef]

Rodier, J. C.

L. Lee, Ph. Lalanne, J. C. Rodier, P. Chavel, E. Cambril, and Y. Chen, J. Opt. A Pure Appl. Opt. 4, S119 (2002).
[CrossRef]

Swanson, G. J.

G. J. Swanson, “Binary optics technology: the theory and design of multilevel diffractive optical elements,” MIT Tech. Rep. 854 (Massachusetts Institute of Technology, Cambridge, Mass., 1989).

Wang, L.

Appl. Opt.

J. Mod. Opt.

Ph. Lalanne and D. Lalanne, J. Mod. Opt. 43, 2063 (1996).
[CrossRef]

J. Opt. A Pure Appl. Opt.

L. Lee, Ph. Lalanne, J. C. Rodier, P. Chavel, E. Cambril, and Y. Chen, J. Opt. A Pure Appl. Opt. 4, S119 (2002).
[CrossRef]

J. Opt. Soc. Am. A

Opt. Lett.

Phys. Rev. B

M. Notomi, Phys. Rev. B 62, 10696 (2000).
[CrossRef]

A. A. Krokhin, P. Halevi, and J. Arriaga, Phys. Rev. B 65, 115208 (2002).
[CrossRef]

Other

G. J. Swanson, “Binary optics technology: the theory and design of multilevel diffractive optical elements,” MIT Tech. Rep. 854 (Massachusetts Institute of Technology, Cambridge, Mass., 1989).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Effective index of a square lattice of cylindrical air holes etched in a material with a refractive index ng=2.1. Solid curve, λ=λ0=ngΛs; dashed–dotted curve, λΛs. The three quantities δnmin=nminλ0-nminλ, δnmax=nmaxλ0-nmaxλ, and Δnλ0 involved in the important parameter α are shown.

Fig. 2
Fig. 2

Model predictions for the first-order diffraction efficiency of artifical dielectric DOEs for different values of α. The dashed–dotted curve α=0 corresponds to the efficiency of conventional échelette-type DOEs.

Fig. 3
Fig. 3

Validation of the model: efficiency of a blazed binary grating for which α=0.39 and comprising both cylindrical holes and square pillars. Solid curve, exact calculation; dashed–dotted curve, model prediction. Illustration of one grating period Λ=25λ0 composed of 35 holes and 15 pillars etched into a Si3N4 film and illuminated from the Si3N4 substrate at normal incidence. The sampling period is Λs=0.5λ0.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

ϕf,λ=λ0λnf,λ-nminλnf,λ0-nminλ0ϕf,λ0.
ϕf,λ=λ0λΔnλΔnλ0ϕf,λ0,
ηλ=sinc21-λ0λΔnλΔnλ0,
nλ=nλ+n2Λs/λ2+OΛs/λ4,
Δnλ=1+α-αλ0/λ2Δnλ0,
ηλ=sinc21-1+αλ0/λ+αλ0/λ3.

Metrics