Abstract

We report the precise transfer of radio-frequency signals by use of the pulse repetition frequency of mode-locked laser sources at 1.5 µm transmitting through a fiber network. The passive transfer instability through a 6.9-km fiber is below 3×10-14 at 1 s, which is comparable with the optical carrier-frequency transfer of a narrow-linewidth cw laser. The instability of the measurement system is below 7×10-15 at 1 s. It is noted that the pulsed mode of operation offers almost an order-of-magnitude improvement in stability at 1 s over that with a sinusoidal amplitude modulation on an optical carrier.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. A. Diddams, Th. Udem, J. C. Bergquist, E. A. Curtis, R. E. Drullinger, L. Hollberg, W. M. Itano, W. D. Lee, C. W. Oates, K. R. Vogel, and D. J. Wineland, Science 293, 825 (2001).
    [CrossRef] [PubMed]
  2. J. Ye, L.-S. Ma, and J. L. Hall, Phys. Rev. Lett. 87, 270801 (2001).
    [CrossRef]
  3. J. Ye, J.-L. Peng, R. J. Jones, K. W. Holman, J. L. Hall, D. J. Jones, S. A. Diddams, J. Kitching, S. Bize, J. C. Bergquist, L. W. Hollberg, L. Robertsson, and L.-S. Ma, J. Opt. Soc. Am. B 20, 1459 (2003).
    [CrossRef]
  4. K. W. Holman, D. J. Jones, J. Ye, and E. P. Ippen, Opt. Lett. 28, 2405 (2003), and references therein.
    [CrossRef] [PubMed]
  5. E. N. Ivanov, M. E. Tobar, and R. A. Woode, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 45, 1526 (1998).
    [CrossRef]

2003

2001

S. A. Diddams, Th. Udem, J. C. Bergquist, E. A. Curtis, R. E. Drullinger, L. Hollberg, W. M. Itano, W. D. Lee, C. W. Oates, K. R. Vogel, and D. J. Wineland, Science 293, 825 (2001).
[CrossRef] [PubMed]

J. Ye, L.-S. Ma, and J. L. Hall, Phys. Rev. Lett. 87, 270801 (2001).
[CrossRef]

1998

E. N. Ivanov, M. E. Tobar, and R. A. Woode, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 45, 1526 (1998).
[CrossRef]

Bergquist, J. C.

J. Ye, J.-L. Peng, R. J. Jones, K. W. Holman, J. L. Hall, D. J. Jones, S. A. Diddams, J. Kitching, S. Bize, J. C. Bergquist, L. W. Hollberg, L. Robertsson, and L.-S. Ma, J. Opt. Soc. Am. B 20, 1459 (2003).
[CrossRef]

S. A. Diddams, Th. Udem, J. C. Bergquist, E. A. Curtis, R. E. Drullinger, L. Hollberg, W. M. Itano, W. D. Lee, C. W. Oates, K. R. Vogel, and D. J. Wineland, Science 293, 825 (2001).
[CrossRef] [PubMed]

Bize, S.

Curtis, E. A.

S. A. Diddams, Th. Udem, J. C. Bergquist, E. A. Curtis, R. E. Drullinger, L. Hollberg, W. M. Itano, W. D. Lee, C. W. Oates, K. R. Vogel, and D. J. Wineland, Science 293, 825 (2001).
[CrossRef] [PubMed]

Diddams, S. A.

J. Ye, J.-L. Peng, R. J. Jones, K. W. Holman, J. L. Hall, D. J. Jones, S. A. Diddams, J. Kitching, S. Bize, J. C. Bergquist, L. W. Hollberg, L. Robertsson, and L.-S. Ma, J. Opt. Soc. Am. B 20, 1459 (2003).
[CrossRef]

S. A. Diddams, Th. Udem, J. C. Bergquist, E. A. Curtis, R. E. Drullinger, L. Hollberg, W. M. Itano, W. D. Lee, C. W. Oates, K. R. Vogel, and D. J. Wineland, Science 293, 825 (2001).
[CrossRef] [PubMed]

Drullinger, R. E.

S. A. Diddams, Th. Udem, J. C. Bergquist, E. A. Curtis, R. E. Drullinger, L. Hollberg, W. M. Itano, W. D. Lee, C. W. Oates, K. R. Vogel, and D. J. Wineland, Science 293, 825 (2001).
[CrossRef] [PubMed]

Hall, J. L.

Hollberg, L.

S. A. Diddams, Th. Udem, J. C. Bergquist, E. A. Curtis, R. E. Drullinger, L. Hollberg, W. M. Itano, W. D. Lee, C. W. Oates, K. R. Vogel, and D. J. Wineland, Science 293, 825 (2001).
[CrossRef] [PubMed]

Hollberg, L. W.

Holman, K. W.

Ippen, E. P.

Itano, W. M.

S. A. Diddams, Th. Udem, J. C. Bergquist, E. A. Curtis, R. E. Drullinger, L. Hollberg, W. M. Itano, W. D. Lee, C. W. Oates, K. R. Vogel, and D. J. Wineland, Science 293, 825 (2001).
[CrossRef] [PubMed]

Ivanov, E. N.

E. N. Ivanov, M. E. Tobar, and R. A. Woode, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 45, 1526 (1998).
[CrossRef]

Jones, D. J.

Jones, R. J.

Kitching, J.

Lee, W. D.

S. A. Diddams, Th. Udem, J. C. Bergquist, E. A. Curtis, R. E. Drullinger, L. Hollberg, W. M. Itano, W. D. Lee, C. W. Oates, K. R. Vogel, and D. J. Wineland, Science 293, 825 (2001).
[CrossRef] [PubMed]

Ma, L.-S.

Oates, C. W.

S. A. Diddams, Th. Udem, J. C. Bergquist, E. A. Curtis, R. E. Drullinger, L. Hollberg, W. M. Itano, W. D. Lee, C. W. Oates, K. R. Vogel, and D. J. Wineland, Science 293, 825 (2001).
[CrossRef] [PubMed]

Peng, J.-L.

Robertsson, L.

Tobar, M. E.

E. N. Ivanov, M. E. Tobar, and R. A. Woode, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 45, 1526 (1998).
[CrossRef]

Udem, Th.

S. A. Diddams, Th. Udem, J. C. Bergquist, E. A. Curtis, R. E. Drullinger, L. Hollberg, W. M. Itano, W. D. Lee, C. W. Oates, K. R. Vogel, and D. J. Wineland, Science 293, 825 (2001).
[CrossRef] [PubMed]

Vogel, K. R.

S. A. Diddams, Th. Udem, J. C. Bergquist, E. A. Curtis, R. E. Drullinger, L. Hollberg, W. M. Itano, W. D. Lee, C. W. Oates, K. R. Vogel, and D. J. Wineland, Science 293, 825 (2001).
[CrossRef] [PubMed]

Wineland, D. J.

S. A. Diddams, Th. Udem, J. C. Bergquist, E. A. Curtis, R. E. Drullinger, L. Hollberg, W. M. Itano, W. D. Lee, C. W. Oates, K. R. Vogel, and D. J. Wineland, Science 293, 825 (2001).
[CrossRef] [PubMed]

Woode, R. A.

E. N. Ivanov, M. E. Tobar, and R. A. Woode, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 45, 1526 (1998).
[CrossRef]

Ye, J.

IEEE Trans. Ultrason. Ferroelectr. Freq. Control

E. N. Ivanov, M. E. Tobar, and R. A. Woode, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 45, 1526 (1998).
[CrossRef]

J. Opt. Soc. Am. B

Opt. Lett.

Phys. Rev. Lett.

J. Ye, L.-S. Ma, and J. L. Hall, Phys. Rev. Lett. 87, 270801 (2001).
[CrossRef]

Science

S. A. Diddams, Th. Udem, J. C. Bergquist, E. A. Curtis, R. E. Drullinger, L. Hollberg, W. M. Itano, W. D. Lee, C. W. Oates, K. R. Vogel, and D. J. Wineland, Science 293, 825 (2001).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

(a) Experimental setup for measurement of the rf transfer instability for the fiber laser’s repetition frequency, allowing time-domain analysis through frequency counting and the use of path (1) or frequency-domain analysis through jitter spectral density and the use of path (2). (b) Setup for measurement of the phase noise spectral density for transfer of the optical carrier of a mode-locked (ML) laser diode. VOA, variable optical attenuator; SSB, single-sideband; FFT, fast Fourier transform; PBS, polarizing beam splitter; VCO, voltage-controlled oscillator.

Fig. 2
Fig. 2

(a) Allan deviation of the rf transfer of the fiber laser’s repetition frequency for several different mode-locking conditions, (b) with the corresponding optical spectrum. Also included are modulated optical carrier and cw optical carrier transfers. Measurement with a 4-m fiber represents the measurement system’s noise floor. (c) Summary of detected instabilities versus power and SNR. BW, bandwidth.

Fig. 3
Fig. 3

(a) Instability of the rf transfer of the fiber laser’s repetition frequency with (filled squares) and without (open squares) an EDFA. Measurement noise floor (filled diamonds). (b) Jitter spectral density on the left axis with (dotted curve) and without (dashed curve) an EDFA and the measurement noise floor (solid curve). Integrated jitter displayed on the right axis with the EDFA (dashed curve) and for the noise floor (dashed–dotted curve).

Fig. 4
Fig. 4

(a) Allan deviation of optical carrier transfer of a mode-locked laser diode (MLLD) (squares) and cw laser (triangles), computed from (b) fits to the frequency noise spectral density for the MLLD and cw laser.

Metrics