Abstract

The use of a confocal detection scheme in a dual-beam thermal-lens microscope is presented. The scheme allows the measurement of absorption factors down to 1.2×10-7 in a 0.35µm3 volume by use of a heating laser power of 100 mW incident upon the sample. Results are presented that prove that a 450-nm axial resolution is possible when a 1.2 water immersion objective lens with a N.A. of 1.2 is used.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Z. L. Wu, P. K. Kuo, Y. S. Lu, S. T. Gu, and R. Krupka, Thin Solid Films 290–291, 271 (1996).
    [CrossRef]
  2. S. Kawasaki, R. J. Lane, and C. L. Tang, Appl. Opt. 33, 992 (1994).
    [CrossRef] [PubMed]
  3. M. Tokeshi, M. Uchida, K. Uchiyama, T. Sawada, and T. Kitamori, J. Lumin. 83–84, 261 (1999).
    [CrossRef]
  4. K. Mawatari, T. Kitamori, and T. Sawada, Anal. Chem. 70, 5037 (1998).
    [CrossRef] [PubMed]
  5. M. Harada, K. Iwamoto, T. Kitamori, and T. Sawada, Anal. Chem. 65, 2938 (1993).
    [CrossRef]
  6. H. Kimura, K. Sekiguchi, T. Kitamori, T. Sawada, and M. Mukaida, Anal. Chem. 73, 4333 (2001).
    [CrossRef] [PubMed]
  7. K. Ushiyama, A. Hibara, H. Kimura, T. Sawada, and T. Kitamori, Jpn. J. Appl. Phys. 39, Part 1, 5316 (2000).
    [CrossRef]
  8. S. E. Bialkowski, Photothermal Spectroscopy Methods for Chemical Analysis (Wiley, New York, 1996).
  9. M. Franko and C. D. Tran, Rev. Sci. Instrum. 67, 1 (1996).
    [CrossRef]

2001 (1)

H. Kimura, K. Sekiguchi, T. Kitamori, T. Sawada, and M. Mukaida, Anal. Chem. 73, 4333 (2001).
[CrossRef] [PubMed]

2000 (1)

K. Ushiyama, A. Hibara, H. Kimura, T. Sawada, and T. Kitamori, Jpn. J. Appl. Phys. 39, Part 1, 5316 (2000).
[CrossRef]

1999 (1)

M. Tokeshi, M. Uchida, K. Uchiyama, T. Sawada, and T. Kitamori, J. Lumin. 83–84, 261 (1999).
[CrossRef]

1998 (1)

K. Mawatari, T. Kitamori, and T. Sawada, Anal. Chem. 70, 5037 (1998).
[CrossRef] [PubMed]

1996 (2)

Z. L. Wu, P. K. Kuo, Y. S. Lu, S. T. Gu, and R. Krupka, Thin Solid Films 290–291, 271 (1996).
[CrossRef]

M. Franko and C. D. Tran, Rev. Sci. Instrum. 67, 1 (1996).
[CrossRef]

1994 (1)

1993 (1)

M. Harada, K. Iwamoto, T. Kitamori, and T. Sawada, Anal. Chem. 65, 2938 (1993).
[CrossRef]

Bialkowski, S. E.

S. E. Bialkowski, Photothermal Spectroscopy Methods for Chemical Analysis (Wiley, New York, 1996).

Franko, M.

M. Franko and C. D. Tran, Rev. Sci. Instrum. 67, 1 (1996).
[CrossRef]

Gu, S. T.

Z. L. Wu, P. K. Kuo, Y. S. Lu, S. T. Gu, and R. Krupka, Thin Solid Films 290–291, 271 (1996).
[CrossRef]

Harada, M.

M. Harada, K. Iwamoto, T. Kitamori, and T. Sawada, Anal. Chem. 65, 2938 (1993).
[CrossRef]

Hibara, A.

K. Ushiyama, A. Hibara, H. Kimura, T. Sawada, and T. Kitamori, Jpn. J. Appl. Phys. 39, Part 1, 5316 (2000).
[CrossRef]

Iwamoto, K.

M. Harada, K. Iwamoto, T. Kitamori, and T. Sawada, Anal. Chem. 65, 2938 (1993).
[CrossRef]

Kawasaki, S.

Kimura, H.

H. Kimura, K. Sekiguchi, T. Kitamori, T. Sawada, and M. Mukaida, Anal. Chem. 73, 4333 (2001).
[CrossRef] [PubMed]

K. Ushiyama, A. Hibara, H. Kimura, T. Sawada, and T. Kitamori, Jpn. J. Appl. Phys. 39, Part 1, 5316 (2000).
[CrossRef]

Kitamori, T.

H. Kimura, K. Sekiguchi, T. Kitamori, T. Sawada, and M. Mukaida, Anal. Chem. 73, 4333 (2001).
[CrossRef] [PubMed]

K. Ushiyama, A. Hibara, H. Kimura, T. Sawada, and T. Kitamori, Jpn. J. Appl. Phys. 39, Part 1, 5316 (2000).
[CrossRef]

M. Tokeshi, M. Uchida, K. Uchiyama, T. Sawada, and T. Kitamori, J. Lumin. 83–84, 261 (1999).
[CrossRef]

K. Mawatari, T. Kitamori, and T. Sawada, Anal. Chem. 70, 5037 (1998).
[CrossRef] [PubMed]

M. Harada, K. Iwamoto, T. Kitamori, and T. Sawada, Anal. Chem. 65, 2938 (1993).
[CrossRef]

Krupka, R.

Z. L. Wu, P. K. Kuo, Y. S. Lu, S. T. Gu, and R. Krupka, Thin Solid Films 290–291, 271 (1996).
[CrossRef]

Kuo, P. K.

Z. L. Wu, P. K. Kuo, Y. S. Lu, S. T. Gu, and R. Krupka, Thin Solid Films 290–291, 271 (1996).
[CrossRef]

Lane, R. J.

Lu, Y. S.

Z. L. Wu, P. K. Kuo, Y. S. Lu, S. T. Gu, and R. Krupka, Thin Solid Films 290–291, 271 (1996).
[CrossRef]

Mawatari, K.

K. Mawatari, T. Kitamori, and T. Sawada, Anal. Chem. 70, 5037 (1998).
[CrossRef] [PubMed]

Mukaida, M.

H. Kimura, K. Sekiguchi, T. Kitamori, T. Sawada, and M. Mukaida, Anal. Chem. 73, 4333 (2001).
[CrossRef] [PubMed]

Sawada, T.

H. Kimura, K. Sekiguchi, T. Kitamori, T. Sawada, and M. Mukaida, Anal. Chem. 73, 4333 (2001).
[CrossRef] [PubMed]

K. Ushiyama, A. Hibara, H. Kimura, T. Sawada, and T. Kitamori, Jpn. J. Appl. Phys. 39, Part 1, 5316 (2000).
[CrossRef]

M. Tokeshi, M. Uchida, K. Uchiyama, T. Sawada, and T. Kitamori, J. Lumin. 83–84, 261 (1999).
[CrossRef]

K. Mawatari, T. Kitamori, and T. Sawada, Anal. Chem. 70, 5037 (1998).
[CrossRef] [PubMed]

M. Harada, K. Iwamoto, T. Kitamori, and T. Sawada, Anal. Chem. 65, 2938 (1993).
[CrossRef]

Sekiguchi, K.

H. Kimura, K. Sekiguchi, T. Kitamori, T. Sawada, and M. Mukaida, Anal. Chem. 73, 4333 (2001).
[CrossRef] [PubMed]

Tang, C. L.

Tokeshi, M.

M. Tokeshi, M. Uchida, K. Uchiyama, T. Sawada, and T. Kitamori, J. Lumin. 83–84, 261 (1999).
[CrossRef]

Tran, C. D.

M. Franko and C. D. Tran, Rev. Sci. Instrum. 67, 1 (1996).
[CrossRef]

Uchida, M.

M. Tokeshi, M. Uchida, K. Uchiyama, T. Sawada, and T. Kitamori, J. Lumin. 83–84, 261 (1999).
[CrossRef]

Uchiyama, K.

M. Tokeshi, M. Uchida, K. Uchiyama, T. Sawada, and T. Kitamori, J. Lumin. 83–84, 261 (1999).
[CrossRef]

Ushiyama, K.

K. Ushiyama, A. Hibara, H. Kimura, T. Sawada, and T. Kitamori, Jpn. J. Appl. Phys. 39, Part 1, 5316 (2000).
[CrossRef]

Wu, Z. L.

Z. L. Wu, P. K. Kuo, Y. S. Lu, S. T. Gu, and R. Krupka, Thin Solid Films 290–291, 271 (1996).
[CrossRef]

Anal. Chem. (3)

K. Mawatari, T. Kitamori, and T. Sawada, Anal. Chem. 70, 5037 (1998).
[CrossRef] [PubMed]

M. Harada, K. Iwamoto, T. Kitamori, and T. Sawada, Anal. Chem. 65, 2938 (1993).
[CrossRef]

H. Kimura, K. Sekiguchi, T. Kitamori, T. Sawada, and M. Mukaida, Anal. Chem. 73, 4333 (2001).
[CrossRef] [PubMed]

Appl. Opt. (1)

J. Lumin. (1)

M. Tokeshi, M. Uchida, K. Uchiyama, T. Sawada, and T. Kitamori, J. Lumin. 83–84, 261 (1999).
[CrossRef]

Jpn. J. Appl. Phys. (1)

K. Ushiyama, A. Hibara, H. Kimura, T. Sawada, and T. Kitamori, Jpn. J. Appl. Phys. 39, Part 1, 5316 (2000).
[CrossRef]

Rev. Sci. Instrum. (1)

M. Franko and C. D. Tran, Rev. Sci. Instrum. 67, 1 (1996).
[CrossRef]

Thin Solid Films (1)

Z. L. Wu, P. K. Kuo, Y. S. Lu, S. T. Gu, and R. Krupka, Thin Solid Films 290–291, 271 (1996).
[CrossRef]

Other (1)

S. E. Bialkowski, Photothermal Spectroscopy Methods for Chemical Analysis (Wiley, New York, 1996).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Theoretical calculations of the confocal (solid curve) and the nonconfocal (dashed curve) thermal-lens signals for surface absorption. The parameters used in the calculations were λprobe=638 nm for the probe beam and λheat=514 nm for the pump beam, a N.A. of 1.2 for the objective lens, index of refraction n=1.33 for the immersion medium.

Fig. 2
Fig. 2

Schematic of the confocal thermal-lens microscope. The heating beam is an argon laser (Ar), 100 mW of which is focused into the sample (S). Its intensity is modulated with an electro-optic modulator (Mod). The probe laser (LD) is a 1-mW 638-nm laser diode. Before entering the microscope, both beams pass through a 5× beam expander (X). M1, M2, focusing and collecting objective lenses; D1, D2, dichroic mirrors used to direct the Ar beam into a beam stop (LT) and the probe beam through a calibrated pinhole (H) and onto a photodetector (PD). We performed axial scans by moving the sample.

Fig. 3
Fig. 3

Experimental confocal surface absorption signal amplitude and model. The sample is a single layer of 180-nm-thick Ta2O5 sputtered onto a fused-silica substrate. The layer’s absorption factor was estimated to be 1.8×10-6. The 900-nm resolution was achieved with a water immersion objective of 1.2 N.A.

Fig. 4
Fig. 4

Nonconfocal surface absorption signal amplitude measured with the same optical arrangement and on the same sample as in Fig. 3; the model was used.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

Δzstandard2.8×zR,
Δzconfocal1.0×zR.
rD0.57×wD,
z1+z21-z2/f=zR0,
δwwz=1-zf2+z2zR021/2-1+z2zR021/21+z2zR021/2.
δwwzR0f.
Pabs/PpαΔz,

Metrics