Abstract

Research on development of optical gas sensors based on evanescent-wave absorption in random-hole optical fibers is described. A process to produce random-hole optical fibers was recently developed that uses a novel in situ bubble formation technique. Gas molecules that exhibit characteristic vibrational absorption lines in the near-IR region that correspond to the transmission window for silica optical fiber have been detected through the evanescent field of the guided mode in the pore region. The presence of the gas molecules in the holes of the fiber appears as a loss at wavelengths that are characteristic of the particular gas species present in the holes. An experimental setup was constructed with these holey fibers for detection of acetylene gas. The results clearly demonstrate the characteristic absorptions in the optical spectra that correspond to the narrow-line absorptions of the acetylene gas, and this represents what is to our knowledge the first report of random-hole fiber gas sensing in the literature.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. U.S. Department of Energy website, www.doe.gov .
  2. J. C. Knight, T. A. Birks, P. St. J. Russell, and D. M. Atkin, Opt. Lett. 21, 1547 (1996).
    [CrossRef] [PubMed]
  3. T. A. Birks, J. C. Knight, and P. St. J. Russell, Opt. Lett. 22, 961 (1997).
    [CrossRef] [PubMed]
  4. J. C. Knight, T. A. Birks, P. St. J. Russell, and J. P. de Sandro, J. Opt. Soc. Am. A 15, 748 (1998).
    [CrossRef]
  5. T. M. Monro, P. J. Bennett, N. G. R. Broderick, and D. J. Richardson, Opt. Lett. 25, 206 (2000).
    [CrossRef]
  6. D. J. DiGiovanni, A. M. Vengsarkar, J. L. Wagener, and R. S. Windeler, “Article comprising a micro-structured optical fiber, and method of making such fiber,” U.S. patent5,802,236 (September1, 1998).
  7. B. J. Mangan, J. C. Knight, T. A. Birks, and P. St. J. Russell, in Digest of Conference on Lasers and Electro-Optics (CLEO) (Optical Society of America, Washington, D.C., 1999), pp. 559–560.
  8. G. R. Pickrell, D. Kominsky, R. H. Stolen, J. Kim, F. Elllis, A. Safaai-Jazi, and A. Wang, IEEE Photon. Technol. Lett. 16, 491 (2004).
    [CrossRef]
  9. G. R. Pickrell, D. Kominski, R. H. Stolen, A. Safaai-Jazi, R. G. May, and A. Wang, Proc. SPIE 4578, 271 (2001).
    [CrossRef]
  10. H. L. Ho, “Multi-point fiber optic gas sensor systems,” Ph.D. dissertation (Department of Electrical Engineering, Hong Kong Polytechnic University, Hong Kong, 2002).

2004 (1)

G. R. Pickrell, D. Kominsky, R. H. Stolen, J. Kim, F. Elllis, A. Safaai-Jazi, and A. Wang, IEEE Photon. Technol. Lett. 16, 491 (2004).
[CrossRef]

2001 (1)

G. R. Pickrell, D. Kominski, R. H. Stolen, A. Safaai-Jazi, R. G. May, and A. Wang, Proc. SPIE 4578, 271 (2001).
[CrossRef]

2000 (1)

1998 (1)

1997 (1)

1996 (1)

Atkin, D. M.

Bennett, P. J.

Birks, T. A.

Broderick, N. G. R.

de Sandro, J. P.

DiGiovanni, D. J.

D. J. DiGiovanni, A. M. Vengsarkar, J. L. Wagener, and R. S. Windeler, “Article comprising a micro-structured optical fiber, and method of making such fiber,” U.S. patent5,802,236 (September1, 1998).

Elllis, F.

G. R. Pickrell, D. Kominsky, R. H. Stolen, J. Kim, F. Elllis, A. Safaai-Jazi, and A. Wang, IEEE Photon. Technol. Lett. 16, 491 (2004).
[CrossRef]

Ho, H. L.

H. L. Ho, “Multi-point fiber optic gas sensor systems,” Ph.D. dissertation (Department of Electrical Engineering, Hong Kong Polytechnic University, Hong Kong, 2002).

Kim, J.

G. R. Pickrell, D. Kominsky, R. H. Stolen, J. Kim, F. Elllis, A. Safaai-Jazi, and A. Wang, IEEE Photon. Technol. Lett. 16, 491 (2004).
[CrossRef]

Knight, J. C.

Kominski, D.

G. R. Pickrell, D. Kominski, R. H. Stolen, A. Safaai-Jazi, R. G. May, and A. Wang, Proc. SPIE 4578, 271 (2001).
[CrossRef]

Kominsky, D.

G. R. Pickrell, D. Kominsky, R. H. Stolen, J. Kim, F. Elllis, A. Safaai-Jazi, and A. Wang, IEEE Photon. Technol. Lett. 16, 491 (2004).
[CrossRef]

Mangan, B. J.

B. J. Mangan, J. C. Knight, T. A. Birks, and P. St. J. Russell, in Digest of Conference on Lasers and Electro-Optics (CLEO) (Optical Society of America, Washington, D.C., 1999), pp. 559–560.

May, R. G.

G. R. Pickrell, D. Kominski, R. H. Stolen, A. Safaai-Jazi, R. G. May, and A. Wang, Proc. SPIE 4578, 271 (2001).
[CrossRef]

Monro, T. M.

Pickrell, G. R.

G. R. Pickrell, D. Kominsky, R. H. Stolen, J. Kim, F. Elllis, A. Safaai-Jazi, and A. Wang, IEEE Photon. Technol. Lett. 16, 491 (2004).
[CrossRef]

G. R. Pickrell, D. Kominski, R. H. Stolen, A. Safaai-Jazi, R. G. May, and A. Wang, Proc. SPIE 4578, 271 (2001).
[CrossRef]

Richardson, D. J.

Russell, P. St. J.

Safaai-Jazi, A.

G. R. Pickrell, D. Kominsky, R. H. Stolen, J. Kim, F. Elllis, A. Safaai-Jazi, and A. Wang, IEEE Photon. Technol. Lett. 16, 491 (2004).
[CrossRef]

G. R. Pickrell, D. Kominski, R. H. Stolen, A. Safaai-Jazi, R. G. May, and A. Wang, Proc. SPIE 4578, 271 (2001).
[CrossRef]

Stolen, R. H.

G. R. Pickrell, D. Kominsky, R. H. Stolen, J. Kim, F. Elllis, A. Safaai-Jazi, and A. Wang, IEEE Photon. Technol. Lett. 16, 491 (2004).
[CrossRef]

G. R. Pickrell, D. Kominski, R. H. Stolen, A. Safaai-Jazi, R. G. May, and A. Wang, Proc. SPIE 4578, 271 (2001).
[CrossRef]

Vengsarkar, A. M.

D. J. DiGiovanni, A. M. Vengsarkar, J. L. Wagener, and R. S. Windeler, “Article comprising a micro-structured optical fiber, and method of making such fiber,” U.S. patent5,802,236 (September1, 1998).

Wagener, J. L.

D. J. DiGiovanni, A. M. Vengsarkar, J. L. Wagener, and R. S. Windeler, “Article comprising a micro-structured optical fiber, and method of making such fiber,” U.S. patent5,802,236 (September1, 1998).

Wang, A.

G. R. Pickrell, D. Kominsky, R. H. Stolen, J. Kim, F. Elllis, A. Safaai-Jazi, and A. Wang, IEEE Photon. Technol. Lett. 16, 491 (2004).
[CrossRef]

G. R. Pickrell, D. Kominski, R. H. Stolen, A. Safaai-Jazi, R. G. May, and A. Wang, Proc. SPIE 4578, 271 (2001).
[CrossRef]

Windeler, R. S.

D. J. DiGiovanni, A. M. Vengsarkar, J. L. Wagener, and R. S. Windeler, “Article comprising a micro-structured optical fiber, and method of making such fiber,” U.S. patent5,802,236 (September1, 1998).

IEEE Photon. Technol. Lett. (1)

G. R. Pickrell, D. Kominsky, R. H. Stolen, J. Kim, F. Elllis, A. Safaai-Jazi, and A. Wang, IEEE Photon. Technol. Lett. 16, 491 (2004).
[CrossRef]

J. Opt. Soc. Am. A (1)

Opt. Lett. (3)

Proc. SPIE (1)

G. R. Pickrell, D. Kominski, R. H. Stolen, A. Safaai-Jazi, R. G. May, and A. Wang, Proc. SPIE 4578, 271 (2001).
[CrossRef]

Other (4)

H. L. Ho, “Multi-point fiber optic gas sensor systems,” Ph.D. dissertation (Department of Electrical Engineering, Hong Kong Polytechnic University, Hong Kong, 2002).

D. J. DiGiovanni, A. M. Vengsarkar, J. L. Wagener, and R. S. Windeler, “Article comprising a micro-structured optical fiber, and method of making such fiber,” U.S. patent5,802,236 (September1, 1998).

B. J. Mangan, J. C. Knight, T. A. Birks, and P. St. J. Russell, in Digest of Conference on Lasers and Electro-Optics (CLEO) (Optical Society of America, Washington, D.C., 1999), pp. 559–560.

U.S. Department of Energy website, www.doe.gov .

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Schematic of the random-hole optical fiber gas sensor setup.

Fig. 2
Fig. 2

Scanning electron microscope micrograph of the fracture cross section of a random-hole optical fiber.

Fig. 3
Fig. 3

Schematic representation of a random-hole optical fiber.

Fig. 4
Fig. 4

Spectra from 25-cm random-hole fiber: (a) spectra background from holey fiber without acetylene, (b) acetylene absorption spectra from random hole fiber at 20 Psi, (c) absolute acetylene absorbance from random-hole fiber at 20 Psi.

Fig. 5
Fig. 5

Decay time of acetylene gas from holes in a saturated random-hole fiber.

Tables (1)

Tables Icon

Table 1 Molecular Species with Absorption Bands around the Near-IR

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

I=I0 exp-2α0/C,

Metrics