Abstract

We present a method of helical long-period fiber grating (H-LPFG) fabrication by use of a CO2 laser for use as an optical torque sensor. A conventional optical fiber grating has periodic vertical index changes along its fiber axis, but a H-LPFG has a screw-type index modulation. The helical index modulation is obtained with the asymmetric index change caused by a single-side laser beam exposure. The H-LPFG shows peak shifts with codirectional or contradirectional torsion to the helix. Also, the polarization-dependent loss is measured to be relatively small compared with that of a conventional long-period fiber grating.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. D. Poole, C. D. Townsend, and K. T. Nelson, J. Lightwave Technol. 9, 598 (1991).
    [CrossRef]
  2. Y. P. Wang, Y. J. Rao, A. Z. Hu, X. K. Zeng, Z. L. Ran, and T. Zhu, in 15th Optical Fiber Sensors Technical Digest (Institute of Electrical and Electronics Engineers, Piscataway, N.J., 2002), pp. 147–150.
  3. W. Zhang, X. Dong, D. Feng, Z. Qin, and Q. Zhao, Electron. Lett. 36, 1686 (2000).
    [CrossRef]
  4. B. R. Chuel and Y. L. Lo, in Proceedings of IEEE Sensors (Institute of Electrical and Electronics Engineers, Piscataway, N.J., 2002), pp. 885–888.
  5. S. T. Oh, W. T. Han, U. C. Paek, and Y. Chung, Microwave Opt. Technol. Lett. 41, 188 (2004).
    [CrossRef]
  6. T. Erdogan, J. Lightwave Technol. 15, 1277 (1997).
    [CrossRef]
  7. T. Erdogan and V. Mizrahi, J. Opt. Soc. Am. B 11, 2100 (1994).
    [CrossRef]

2004 (1)

S. T. Oh, W. T. Han, U. C. Paek, and Y. Chung, Microwave Opt. Technol. Lett. 41, 188 (2004).
[CrossRef]

2000 (1)

W. Zhang, X. Dong, D. Feng, Z. Qin, and Q. Zhao, Electron. Lett. 36, 1686 (2000).
[CrossRef]

1997 (1)

T. Erdogan, J. Lightwave Technol. 15, 1277 (1997).
[CrossRef]

1994 (1)

1991 (1)

C. D. Poole, C. D. Townsend, and K. T. Nelson, J. Lightwave Technol. 9, 598 (1991).
[CrossRef]

Chuel, B. R.

B. R. Chuel and Y. L. Lo, in Proceedings of IEEE Sensors (Institute of Electrical and Electronics Engineers, Piscataway, N.J., 2002), pp. 885–888.

Chung, Y.

S. T. Oh, W. T. Han, U. C. Paek, and Y. Chung, Microwave Opt. Technol. Lett. 41, 188 (2004).
[CrossRef]

Dong, X.

W. Zhang, X. Dong, D. Feng, Z. Qin, and Q. Zhao, Electron. Lett. 36, 1686 (2000).
[CrossRef]

Erdogan, T.

Feng, D.

W. Zhang, X. Dong, D. Feng, Z. Qin, and Q. Zhao, Electron. Lett. 36, 1686 (2000).
[CrossRef]

Han, W. T.

S. T. Oh, W. T. Han, U. C. Paek, and Y. Chung, Microwave Opt. Technol. Lett. 41, 188 (2004).
[CrossRef]

Hu, A. Z.

Y. P. Wang, Y. J. Rao, A. Z. Hu, X. K. Zeng, Z. L. Ran, and T. Zhu, in 15th Optical Fiber Sensors Technical Digest (Institute of Electrical and Electronics Engineers, Piscataway, N.J., 2002), pp. 147–150.

Lo, Y. L.

B. R. Chuel and Y. L. Lo, in Proceedings of IEEE Sensors (Institute of Electrical and Electronics Engineers, Piscataway, N.J., 2002), pp. 885–888.

Mizrahi, V.

Nelson, K. T.

C. D. Poole, C. D. Townsend, and K. T. Nelson, J. Lightwave Technol. 9, 598 (1991).
[CrossRef]

Oh, S. T.

S. T. Oh, W. T. Han, U. C. Paek, and Y. Chung, Microwave Opt. Technol. Lett. 41, 188 (2004).
[CrossRef]

Paek, U. C.

S. T. Oh, W. T. Han, U. C. Paek, and Y. Chung, Microwave Opt. Technol. Lett. 41, 188 (2004).
[CrossRef]

Poole, C. D.

C. D. Poole, C. D. Townsend, and K. T. Nelson, J. Lightwave Technol. 9, 598 (1991).
[CrossRef]

Qin, Z.

W. Zhang, X. Dong, D. Feng, Z. Qin, and Q. Zhao, Electron. Lett. 36, 1686 (2000).
[CrossRef]

Ran, Z. L.

Y. P. Wang, Y. J. Rao, A. Z. Hu, X. K. Zeng, Z. L. Ran, and T. Zhu, in 15th Optical Fiber Sensors Technical Digest (Institute of Electrical and Electronics Engineers, Piscataway, N.J., 2002), pp. 147–150.

Rao, Y. J.

Y. P. Wang, Y. J. Rao, A. Z. Hu, X. K. Zeng, Z. L. Ran, and T. Zhu, in 15th Optical Fiber Sensors Technical Digest (Institute of Electrical and Electronics Engineers, Piscataway, N.J., 2002), pp. 147–150.

Townsend, C. D.

C. D. Poole, C. D. Townsend, and K. T. Nelson, J. Lightwave Technol. 9, 598 (1991).
[CrossRef]

Wang, Y. P.

Y. P. Wang, Y. J. Rao, A. Z. Hu, X. K. Zeng, Z. L. Ran, and T. Zhu, in 15th Optical Fiber Sensors Technical Digest (Institute of Electrical and Electronics Engineers, Piscataway, N.J., 2002), pp. 147–150.

Zeng, X. K.

Y. P. Wang, Y. J. Rao, A. Z. Hu, X. K. Zeng, Z. L. Ran, and T. Zhu, in 15th Optical Fiber Sensors Technical Digest (Institute of Electrical and Electronics Engineers, Piscataway, N.J., 2002), pp. 147–150.

Zhang, W.

W. Zhang, X. Dong, D. Feng, Z. Qin, and Q. Zhao, Electron. Lett. 36, 1686 (2000).
[CrossRef]

Zhao, Q.

W. Zhang, X. Dong, D. Feng, Z. Qin, and Q. Zhao, Electron. Lett. 36, 1686 (2000).
[CrossRef]

Zhu, T.

Y. P. Wang, Y. J. Rao, A. Z. Hu, X. K. Zeng, Z. L. Ran, and T. Zhu, in 15th Optical Fiber Sensors Technical Digest (Institute of Electrical and Electronics Engineers, Piscataway, N.J., 2002), pp. 147–150.

Electron. Lett. (1)

W. Zhang, X. Dong, D. Feng, Z. Qin, and Q. Zhao, Electron. Lett. 36, 1686 (2000).
[CrossRef]

J. Lightwave Technol. (2)

C. D. Poole, C. D. Townsend, and K. T. Nelson, J. Lightwave Technol. 9, 598 (1991).
[CrossRef]

T. Erdogan, J. Lightwave Technol. 15, 1277 (1997).
[CrossRef]

J. Opt. Soc. Am. B (1)

Microwave Opt. Technol. Lett. (1)

S. T. Oh, W. T. Han, U. C. Paek, and Y. Chung, Microwave Opt. Technol. Lett. 41, 188 (2004).
[CrossRef]

Other (2)

Y. P. Wang, Y. J. Rao, A. Z. Hu, X. K. Zeng, Z. L. Ran, and T. Zhu, in 15th Optical Fiber Sensors Technical Digest (Institute of Electrical and Electronics Engineers, Piscataway, N.J., 2002), pp. 147–150.

B. R. Chuel and Y. L. Lo, in Proceedings of IEEE Sensors (Institute of Electrical and Electronics Engineers, Piscataway, N.J., 2002), pp. 885–888.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Susceptibility structure of a H-LPFB. εa and εb are the maximum and minimum of the susceptibility ellipsoid, respectively, and Λ is the period of the helix.

Fig. 2
Fig. 2

Experimental setup. An optical fiber continuously rotates and moves along the fiber axis while the CO2 laser beam is irradiated on it.

Fig. 3
Fig. 3

Simulation of the transmission spectrum of a H-LPFG with coupling coefficient κ of 2.15×10-5, helical period Λ of 811 µm, and length L of 6 cm.

Fig. 4
Fig. 4

Transmission spectra of a fabricated H-LPFG. Thick solid curve, original transmission curve. Thin solid curve, case with +90° 4.17 turns/m of codirectional torsion of the helix. Dotted curve, case with -90° 4.17 turns/m of contradirectional torsion.

Fig. 5
Fig. 5

Transmission spectra and PDL curve of a H-LPFG (solid curve) and a conventional LPFG (dotted curve). The resonant wavelength and the peak depth of the conventional LPFG were 1545.8 nm and -11.4 dB, respectively, and it has a maximum PDL of 7.3 dB. The main peak depth of the H-LPFG was -10.05 dB at 1527.12 nm, and the maximum PDL was 0.42 dB.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

ε=cos Kz-sin Kzsin Kzcos Kzεa00εb×cos Kzsin Kz-sin Kzcos Kz=ε++ε- cos 2Kzε- sin Kzε- sin Kzε+-ε- cos 2Kz,
AkHzAkVz=iC signβkl×ε- cos2KzEkH|ElHε- sin2KzEkH|ElVε- sin2KzEkV|ElH-ε- cos2KzEkV|ElV×AlHAlVexpiβl-βkz,
AcoHz=iCκ2AclH-iAclVexpiβcl-βco+2Kz,
AclHz=iCκ2AcoH+iAcoVexpiβco-βcl-2Kz,
AcoVz=-iAcoHz,
AclVz=iAclHz.
AcoHzAclHz=cossz+iΔβ/2/ssinsziκ/ssinsziκ/ssinszcossz-iΔβ/2/ssinszAcoH0exp-iΔβz/2AclH0expiΔβz/2,

Metrics