Abstract

We report a polarizing beam splitter that uses binary phase gratings written onto a liquid-crystal spatial light modulator. These gratings produce several linearly polarized diffracted orders and a zeroth-order beam whose polarization state can be completely controlled. Experimental results are shown.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. Todorov and L. Nikolova, Opt. Lett. 17, 358 (1992).
    [CrossRef] [PubMed]
  2. F. Gori, Opt. Lett. 24, 584 (1999).
    [CrossRef]
  3. M. Le Docen and P. Pellat-Finet, Opt. Commun. 151, 321 (1998).
    [CrossRef]
  4. J. Tervo and J. Turunen, Opt. Lett. 25, 785 (2000).
    [CrossRef]
  5. M. Honkanen, V. Kettunen, J. Tervo, and J. Turunen, J. Mod. Opt. 47, 2351 (2000).
    [CrossRef]
  6. J. A. Davis, J. Adachi, C. R. Fernández-Pousa, and I. Moreno, Opt. Lett. 26, 587 (2001).
    [CrossRef]
  7. C. R. Fernández-Pousa, I. Moreno, J. A. Davis, and J. Adachi, Opt. Lett. 26, 1651 (2001).
    [CrossRef]
  8. E. Hasman, Z. Bomzon, A. Niv, G. Biener, and V. Kleiner, Opt. Commun. 209, 45 (2002).
    [CrossRef]
  9. E. Hasman, V. Kleiner, G. Biener, and A. Niv, Appl. Phys. Lett. 82, 328 (2003).
    [CrossRef]
  10. J. A. Davis, D. E. McNamara, D. M. Cottrell, and T. Sonehara, Appl. Opt. 39, 1549 (2000).
    [CrossRef]

2003 (1)

E. Hasman, V. Kleiner, G. Biener, and A. Niv, Appl. Phys. Lett. 82, 328 (2003).
[CrossRef]

2002 (1)

E. Hasman, Z. Bomzon, A. Niv, G. Biener, and V. Kleiner, Opt. Commun. 209, 45 (2002).
[CrossRef]

2001 (2)

2000 (3)

1999 (1)

1998 (1)

M. Le Docen and P. Pellat-Finet, Opt. Commun. 151, 321 (1998).
[CrossRef]

1992 (1)

Adachi, J.

Biener, G.

E. Hasman, V. Kleiner, G. Biener, and A. Niv, Appl. Phys. Lett. 82, 328 (2003).
[CrossRef]

E. Hasman, Z. Bomzon, A. Niv, G. Biener, and V. Kleiner, Opt. Commun. 209, 45 (2002).
[CrossRef]

Bomzon, Z.

E. Hasman, Z. Bomzon, A. Niv, G. Biener, and V. Kleiner, Opt. Commun. 209, 45 (2002).
[CrossRef]

Cottrell, D. M.

Davis, J. A.

Fernández-Pousa, C. R.

Gori, F.

Hasman, E.

E. Hasman, V. Kleiner, G. Biener, and A. Niv, Appl. Phys. Lett. 82, 328 (2003).
[CrossRef]

E. Hasman, Z. Bomzon, A. Niv, G. Biener, and V. Kleiner, Opt. Commun. 209, 45 (2002).
[CrossRef]

Honkanen, M.

M. Honkanen, V. Kettunen, J. Tervo, and J. Turunen, J. Mod. Opt. 47, 2351 (2000).
[CrossRef]

Kettunen, V.

M. Honkanen, V. Kettunen, J. Tervo, and J. Turunen, J. Mod. Opt. 47, 2351 (2000).
[CrossRef]

Kleiner, V.

E. Hasman, V. Kleiner, G. Biener, and A. Niv, Appl. Phys. Lett. 82, 328 (2003).
[CrossRef]

E. Hasman, Z. Bomzon, A. Niv, G. Biener, and V. Kleiner, Opt. Commun. 209, 45 (2002).
[CrossRef]

Le Docen, M.

M. Le Docen and P. Pellat-Finet, Opt. Commun. 151, 321 (1998).
[CrossRef]

McNamara, D. E.

Moreno, I.

Nikolova, L.

Niv, A.

E. Hasman, V. Kleiner, G. Biener, and A. Niv, Appl. Phys. Lett. 82, 328 (2003).
[CrossRef]

E. Hasman, Z. Bomzon, A. Niv, G. Biener, and V. Kleiner, Opt. Commun. 209, 45 (2002).
[CrossRef]

Pellat-Finet, P.

M. Le Docen and P. Pellat-Finet, Opt. Commun. 151, 321 (1998).
[CrossRef]

Sonehara, T.

Tervo, J.

J. Tervo and J. Turunen, Opt. Lett. 25, 785 (2000).
[CrossRef]

M. Honkanen, V. Kettunen, J. Tervo, and J. Turunen, J. Mod. Opt. 47, 2351 (2000).
[CrossRef]

Todorov, T.

Turunen, J.

M. Honkanen, V. Kettunen, J. Tervo, and J. Turunen, J. Mod. Opt. 47, 2351 (2000).
[CrossRef]

J. Tervo and J. Turunen, Opt. Lett. 25, 785 (2000).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. Lett. (1)

E. Hasman, V. Kleiner, G. Biener, and A. Niv, Appl. Phys. Lett. 82, 328 (2003).
[CrossRef]

J. Mod. Opt. (1)

M. Honkanen, V. Kettunen, J. Tervo, and J. Turunen, J. Mod. Opt. 47, 2351 (2000).
[CrossRef]

Opt. Commun. (2)

E. Hasman, Z. Bomzon, A. Niv, G. Biener, and V. Kleiner, Opt. Commun. 209, 45 (2002).
[CrossRef]

M. Le Docen and P. Pellat-Finet, Opt. Commun. 151, 321 (1998).
[CrossRef]

Opt. Lett. (5)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Diffraction grating showing a period of the grating with two areas with different widths and phase shifts.

Fig. 2
Fig. 2

Experimental results for a grating with a linearly polarized zeroth order at +45°. The analyzer polarizer is oriented as (a) -45°, (b) horizontal, (c) +45°, and (d) vertical.

Fig. 3
Fig. 3

Experimental results for a grating with a linearly polarized zeroth order at -45°. The analyzer polarizer is (a) -45°, (b) horizontal, (c) +45°, and (d) vertical.

Fig. 4
Fig. 4

Experimental results for a grating with a right circularly polarized zeroth order. (a) Right circular polarization analyzer, (b) left circular polarization analyzer.

Fig. 5
Fig. 5

Experimental results for a grating with a left circularly polarized zeroth order. (a) Right circular polarization analyzer, (b) left circular polarization analyzer.

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

Gh,v=100tx.
tx=n=-cn expin2πx/d.
cn=1d0dtxexp-in2πx/ddx.
Gh,v=100tx=100c0+000n0cn expin2πx/d.
c0=expiϕ12w-dd,
cn0=2 expiϕ1expinπw/dπn sinnπwd.
E=cosαsinα.
EHEV=cosαc0 sinα+n0 expin2πxd0cn sinα.
EHEV=c0sinα1expiϕ1+n=±1 expin2πxd0cn sinα.

Metrics