Abstract

We present a lamellar grating interferometer realized with microelectromechanical system technology. It is used as a time-scanning Fourier-transform spectrometer. The motion is carried out by an electrostatic comb drive actuator fabricated by silicon micromachining, particularly by silicon-on-insulator technology. For the first time to our knowledge, we measure the spectrum of an extended white-light source with a resolution of 1.6 nm at a wavelength of 400 nm and of 5.5 nm at 800 nm. The wavelength accuracy is better than 0.5 nm, and the inspected wavelength range extends from 380 to 1100 nm. The optical path difference maximum is 145 µm. The dimensions of the device are 5 mm×5 mm.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. O. Manzardo, “Micro-sized Fourier spectrometers,” Ph.D. dissertation (University of Neuchâtel, Neuchâtel, Switzerland, 2002).
  2. S. D. Collins, R. L. Smith, C. Gonzàles, K. P. Stewart, J. G. Hagopian, and J. M. Sirota, Opt. Lett. 24, 844 (1999).
    [CrossRef]
  3. O. Manzardo, H. P. Herzig, C. R. Marxer, and N. F. de Rooij, Opt. Lett. 24, 1705 (1999).
    [CrossRef]
  4. H. L. Kung, A. Bhatnagar, and D. A. B. Miller, Opt. Lett. 26, 1645 (2001).
    [CrossRef]
  5. H. L. Kung, S. R. Bhalotra, J. D. Mansell, D. A. B. Miller, and J. S. Harris, IEEE J. Sel. Top. Quantum Electron. 8, 98 (2002).
    [CrossRef]
  6. J. Strong and G. A. Vanasse, J. Opt. Soc. Am. 50, 113 (1960).
  7. J. E. Chamberlain, The Principles of Interferometric Spectroscopy (Wiley, New York, 1979).
  8. W. Noell, P.-A. Clerc, L. Dellmann, B. Guldimann, H. P. Herzig, O. Manzardo, C. R. Marxer, K. J. Weible, R. Dändliker, and N. F. de Rooij, IEEE J. Sel. Top. Quantum Electron. 8, 148 (2002).
    [CrossRef]

2002 (2)

H. L. Kung, S. R. Bhalotra, J. D. Mansell, D. A. B. Miller, and J. S. Harris, IEEE J. Sel. Top. Quantum Electron. 8, 98 (2002).
[CrossRef]

W. Noell, P.-A. Clerc, L. Dellmann, B. Guldimann, H. P. Herzig, O. Manzardo, C. R. Marxer, K. J. Weible, R. Dändliker, and N. F. de Rooij, IEEE J. Sel. Top. Quantum Electron. 8, 148 (2002).
[CrossRef]

2001 (1)

1999 (2)

1960 (1)

Bhalotra, S. R.

H. L. Kung, S. R. Bhalotra, J. D. Mansell, D. A. B. Miller, and J. S. Harris, IEEE J. Sel. Top. Quantum Electron. 8, 98 (2002).
[CrossRef]

Bhatnagar, A.

Chamberlain, J. E.

J. E. Chamberlain, The Principles of Interferometric Spectroscopy (Wiley, New York, 1979).

Clerc, P.-A.

W. Noell, P.-A. Clerc, L. Dellmann, B. Guldimann, H. P. Herzig, O. Manzardo, C. R. Marxer, K. J. Weible, R. Dändliker, and N. F. de Rooij, IEEE J. Sel. Top. Quantum Electron. 8, 148 (2002).
[CrossRef]

Collins, S. D.

Dändliker, R.

W. Noell, P.-A. Clerc, L. Dellmann, B. Guldimann, H. P. Herzig, O. Manzardo, C. R. Marxer, K. J. Weible, R. Dändliker, and N. F. de Rooij, IEEE J. Sel. Top. Quantum Electron. 8, 148 (2002).
[CrossRef]

de Rooij, N. F.

W. Noell, P.-A. Clerc, L. Dellmann, B. Guldimann, H. P. Herzig, O. Manzardo, C. R. Marxer, K. J. Weible, R. Dändliker, and N. F. de Rooij, IEEE J. Sel. Top. Quantum Electron. 8, 148 (2002).
[CrossRef]

O. Manzardo, H. P. Herzig, C. R. Marxer, and N. F. de Rooij, Opt. Lett. 24, 1705 (1999).
[CrossRef]

Dellmann, L.

W. Noell, P.-A. Clerc, L. Dellmann, B. Guldimann, H. P. Herzig, O. Manzardo, C. R. Marxer, K. J. Weible, R. Dändliker, and N. F. de Rooij, IEEE J. Sel. Top. Quantum Electron. 8, 148 (2002).
[CrossRef]

Gonzàles, C.

Guldimann, B.

W. Noell, P.-A. Clerc, L. Dellmann, B. Guldimann, H. P. Herzig, O. Manzardo, C. R. Marxer, K. J. Weible, R. Dändliker, and N. F. de Rooij, IEEE J. Sel. Top. Quantum Electron. 8, 148 (2002).
[CrossRef]

Hagopian, J. G.

Harris, J. S.

H. L. Kung, S. R. Bhalotra, J. D. Mansell, D. A. B. Miller, and J. S. Harris, IEEE J. Sel. Top. Quantum Electron. 8, 98 (2002).
[CrossRef]

Herzig, H. P.

W. Noell, P.-A. Clerc, L. Dellmann, B. Guldimann, H. P. Herzig, O. Manzardo, C. R. Marxer, K. J. Weible, R. Dändliker, and N. F. de Rooij, IEEE J. Sel. Top. Quantum Electron. 8, 148 (2002).
[CrossRef]

O. Manzardo, H. P. Herzig, C. R. Marxer, and N. F. de Rooij, Opt. Lett. 24, 1705 (1999).
[CrossRef]

Kung, H. L.

H. L. Kung, S. R. Bhalotra, J. D. Mansell, D. A. B. Miller, and J. S. Harris, IEEE J. Sel. Top. Quantum Electron. 8, 98 (2002).
[CrossRef]

H. L. Kung, A. Bhatnagar, and D. A. B. Miller, Opt. Lett. 26, 1645 (2001).
[CrossRef]

Mansell, J. D.

H. L. Kung, S. R. Bhalotra, J. D. Mansell, D. A. B. Miller, and J. S. Harris, IEEE J. Sel. Top. Quantum Electron. 8, 98 (2002).
[CrossRef]

Manzardo, O.

W. Noell, P.-A. Clerc, L. Dellmann, B. Guldimann, H. P. Herzig, O. Manzardo, C. R. Marxer, K. J. Weible, R. Dändliker, and N. F. de Rooij, IEEE J. Sel. Top. Quantum Electron. 8, 148 (2002).
[CrossRef]

O. Manzardo, H. P. Herzig, C. R. Marxer, and N. F. de Rooij, Opt. Lett. 24, 1705 (1999).
[CrossRef]

O. Manzardo, “Micro-sized Fourier spectrometers,” Ph.D. dissertation (University of Neuchâtel, Neuchâtel, Switzerland, 2002).

Marxer, C. R.

W. Noell, P.-A. Clerc, L. Dellmann, B. Guldimann, H. P. Herzig, O. Manzardo, C. R. Marxer, K. J. Weible, R. Dändliker, and N. F. de Rooij, IEEE J. Sel. Top. Quantum Electron. 8, 148 (2002).
[CrossRef]

O. Manzardo, H. P. Herzig, C. R. Marxer, and N. F. de Rooij, Opt. Lett. 24, 1705 (1999).
[CrossRef]

Miller, D. A. B.

H. L. Kung, S. R. Bhalotra, J. D. Mansell, D. A. B. Miller, and J. S. Harris, IEEE J. Sel. Top. Quantum Electron. 8, 98 (2002).
[CrossRef]

H. L. Kung, A. Bhatnagar, and D. A. B. Miller, Opt. Lett. 26, 1645 (2001).
[CrossRef]

Noell, W.

W. Noell, P.-A. Clerc, L. Dellmann, B. Guldimann, H. P. Herzig, O. Manzardo, C. R. Marxer, K. J. Weible, R. Dändliker, and N. F. de Rooij, IEEE J. Sel. Top. Quantum Electron. 8, 148 (2002).
[CrossRef]

Sirota, J. M.

Smith, R. L.

Stewart, K. P.

Strong, J.

Vanasse, G. A.

Weible, K. J.

W. Noell, P.-A. Clerc, L. Dellmann, B. Guldimann, H. P. Herzig, O. Manzardo, C. R. Marxer, K. J. Weible, R. Dändliker, and N. F. de Rooij, IEEE J. Sel. Top. Quantum Electron. 8, 148 (2002).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (2)

H. L. Kung, S. R. Bhalotra, J. D. Mansell, D. A. B. Miller, and J. S. Harris, IEEE J. Sel. Top. Quantum Electron. 8, 98 (2002).
[CrossRef]

W. Noell, P.-A. Clerc, L. Dellmann, B. Guldimann, H. P. Herzig, O. Manzardo, C. R. Marxer, K. J. Weible, R. Dändliker, and N. F. de Rooij, IEEE J. Sel. Top. Quantum Electron. 8, 148 (2002).
[CrossRef]

J. Opt. Soc. Am. (1)

Opt. Lett. (3)

Other (2)

J. E. Chamberlain, The Principles of Interferometric Spectroscopy (Wiley, New York, 1979).

O. Manzardo, “Micro-sized Fourier spectrometers,” Ph.D. dissertation (University of Neuchâtel, Neuchâtel, Switzerland, 2002).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Schematic of the lamellar grating interferometer. An incident wave front is divided by the front and back facets of a binary grating. The OPD δ between the beams reflected by the front and back facets is represented by the bold line and is given by Eq. (2). The OPD δ as a function of diffraction angle α and depth d of the grating is the sum of the distances AB, BC, and CD.

Fig. 2
Fig. 2

Intensity I of the diffraction pattern of a lamellar grating [see relation (1)]. Intensity I is the multiplication of the three contributions, I1, I2, and I3, described in the text. The solid curve corresponds to a phase shift of φ=M2π, and the dotted curve corresponds to φ=π+M2π (M is an integer).

Fig. 3
Fig. 3

Lamellar grating interferometer. One can distinguish the fixed (light) and mobile (dark) mirrors. The mobile mirrors are actuated by an electrostatic comb drive actuator. The motion is linear. The fabrication technology and the actuation principles are described in Refs. 1, 3, and 8.

Fig. 4
Fig. 4

Recorded interferogram of a low-pressure xenon arc lamp, with an expansion showing the OPD zero.

Fig. 5
Fig. 5

Top, Power spectrum retrieved from the interferogram shown in Fig. 4. Bottom, Spectrum of the same lamp measured with a monochromator with a spectral resolution of 0.5 nm.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

Isin KK2I1sin 2nKsin 2K2I2cos2φ2I3,
δ=d1+cos α+a2d sin α.
Bσ=-Iδexp-i2πσδdδ,

Metrics