Abstract

We describe a broadband achromatic half-wave retarder for normally incident light of arbitrary polarization. The device consists of a stack of one nematic liquid-crystal cell with uniform alignment sandwiched between two twisted nematic layers that have identical twist angles (135°) but different orientations of their surface alignment. As a specific application, for light with linear polarization at 45° to the optic axis of the homogeneous cell the stack functions efficiently as an optical switch. The switch rotates the incident linear polarization by 90° in the absence of an electric field. When sufficiently high voltage is applied to all three layers, the device produces a near-zero effect on the incident polarization. An achromatic response in the spectral range 400–700 nm is achieved for both activated and quiescent states.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (4)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription