Abstract

A preliminary investigation is made into the possibility of applying the passive standoff detection technique to the identification of radiological and related products. This work is based on laboratory measurements of the diffuse reflectance from a number of products, including U3O8, CsI, SrO, I2O5, and La2O3. These reflectances are incorporated into the MODTRAN4 radiative-transfer model to simulate the nadir radiance from surfaces consisting of these radiological or related materials. The simulations are performed for two situations: at an altitude of 1 m above the ground, to simulate the passive detection of nuclear products with a hand-held instrument, and at an altitude of 1 km, to simulate a passive sensor carried aboard an aircraft. The results of the simulations under idealized conditions, as well as the results of one measurement, show that the passive standoff detection of radiological products by Fourier-transform infrared radiometry may be possible.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J.-M. Thériault, E. Puckrin, F. Bouffard, and B. Déry, Appl. Opt. 43, 1425 (2004).
    [CrossRef]
  2. C. T. Chaffin, T. L. Marshall, and N. C. Chaffin, Field Anal. Chem. Technol. 3, 111 (1999).
    [CrossRef]
  3. D. F. Flanigan, Appl. Opt. 36, 7027 (1997).
    [CrossRef]
  4. J.-M. Thériault and E. Puckrin, Appl. Opt. 42, 6696 (2003).
    [CrossRef]
  5. A. Ben-David, Opt. Express 11, 418 (2003), http://www.opticsexpress.org .
    [CrossRef] [PubMed]
  6. A. Berk, L. S. Bernstein, and D. C. Robertson, “MODTRAN: a moderate resolution model for LOWTRAN7,” (Air Force Geophysics Laboratory, Bedford, Mass., 1989), pp. 1–38.
  7. D. B. Nash, Appl. Opt. 25, 2427 (1986).
    [CrossRef]
  8. R. A. Neville, J. Lévesque, K. Staenz, C. Nadeau, P. Hauff, and G. A. Borstad, Can. J. Remote Sens. 29, 99 (2003).
    [CrossRef]
  9. J.-M. Thériault, Appl. Opt. 38, 505 (1999).
    [CrossRef]

2004 (1)

2003 (3)

A. Ben-David, Opt. Express 11, 418 (2003), http://www.opticsexpress.org .
[CrossRef] [PubMed]

J.-M. Thériault and E. Puckrin, Appl. Opt. 42, 6696 (2003).
[CrossRef]

R. A. Neville, J. Lévesque, K. Staenz, C. Nadeau, P. Hauff, and G. A. Borstad, Can. J. Remote Sens. 29, 99 (2003).
[CrossRef]

1999 (2)

C. T. Chaffin, T. L. Marshall, and N. C. Chaffin, Field Anal. Chem. Technol. 3, 111 (1999).
[CrossRef]

J.-M. Thériault, Appl. Opt. 38, 505 (1999).
[CrossRef]

1997 (1)

1986 (1)

Ben-David, A.

Berk, A.

A. Berk, L. S. Bernstein, and D. C. Robertson, “MODTRAN: a moderate resolution model for LOWTRAN7,” (Air Force Geophysics Laboratory, Bedford, Mass., 1989), pp. 1–38.

Bernstein, L. S.

A. Berk, L. S. Bernstein, and D. C. Robertson, “MODTRAN: a moderate resolution model for LOWTRAN7,” (Air Force Geophysics Laboratory, Bedford, Mass., 1989), pp. 1–38.

Borstad, G. A.

R. A. Neville, J. Lévesque, K. Staenz, C. Nadeau, P. Hauff, and G. A. Borstad, Can. J. Remote Sens. 29, 99 (2003).
[CrossRef]

Bouffard, F.

Chaffin, C. T.

C. T. Chaffin, T. L. Marshall, and N. C. Chaffin, Field Anal. Chem. Technol. 3, 111 (1999).
[CrossRef]

Chaffin, N. C.

C. T. Chaffin, T. L. Marshall, and N. C. Chaffin, Field Anal. Chem. Technol. 3, 111 (1999).
[CrossRef]

Déry, B.

Flanigan, D. F.

Hauff, P.

R. A. Neville, J. Lévesque, K. Staenz, C. Nadeau, P. Hauff, and G. A. Borstad, Can. J. Remote Sens. 29, 99 (2003).
[CrossRef]

Lévesque, J.

R. A. Neville, J. Lévesque, K. Staenz, C. Nadeau, P. Hauff, and G. A. Borstad, Can. J. Remote Sens. 29, 99 (2003).
[CrossRef]

Marshall, T. L.

C. T. Chaffin, T. L. Marshall, and N. C. Chaffin, Field Anal. Chem. Technol. 3, 111 (1999).
[CrossRef]

Nadeau, C.

R. A. Neville, J. Lévesque, K. Staenz, C. Nadeau, P. Hauff, and G. A. Borstad, Can. J. Remote Sens. 29, 99 (2003).
[CrossRef]

Nash, D. B.

Neville, R. A.

R. A. Neville, J. Lévesque, K. Staenz, C. Nadeau, P. Hauff, and G. A. Borstad, Can. J. Remote Sens. 29, 99 (2003).
[CrossRef]

Puckrin, E.

Robertson, D. C.

A. Berk, L. S. Bernstein, and D. C. Robertson, “MODTRAN: a moderate resolution model for LOWTRAN7,” (Air Force Geophysics Laboratory, Bedford, Mass., 1989), pp. 1–38.

Staenz, K.

R. A. Neville, J. Lévesque, K. Staenz, C. Nadeau, P. Hauff, and G. A. Borstad, Can. J. Remote Sens. 29, 99 (2003).
[CrossRef]

Thériault, J.-M.

Appl. Opt. (5)

Can. J. Remote Sens. (1)

R. A. Neville, J. Lévesque, K. Staenz, C. Nadeau, P. Hauff, and G. A. Borstad, Can. J. Remote Sens. 29, 99 (2003).
[CrossRef]

Field Anal. Chem. Technol. (1)

C. T. Chaffin, T. L. Marshall, and N. C. Chaffin, Field Anal. Chem. Technol. 3, 111 (1999).
[CrossRef]

Opt. Express (1)

Other (1)

A. Berk, L. S. Bernstein, and D. C. Robertson, “MODTRAN: a moderate resolution model for LOWTRAN7,” (Air Force Geophysics Laboratory, Bedford, Mass., 1989), pp. 1–38.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Laboratory reflectance spectra associated with a number of radiological and related products measured at a resolution of 4 cm-1.

Fig. 2
Fig. 2

Transmission spectra for three different optical depths of the 1976 U.S. standard atmosphere, as simulated with the MODTRAN4 model.

Fig. 3
Fig. 3

(A) Direct total nadir radiance simulated for two altitudes with a SrO surface. (B) Differential radiance simulated by subtracting the nadir radiance of a gray body surface reflectance of 15% from the nadir radiance of SrO. The SrO absorption features are clearly visible in the differential spectra.

Fig. 4
Fig. 4

(A) Direct total nadir radiance simulated for two altitudes with a U3O8 surface. (B) Differential radiance simulated by subtracting the nadir radiance of a graybody surface reflectance of 1% from the nadir radiance of U3O8. The U3O8 absorption features are clearly visible in the differential spectra.

Fig. 5
Fig. 5

(A) Photograph showing the powdered SrO sample sprinkled on the stone–tar rooftop. (B) Differential radiance spectra measured for the rooftop contaminated with the SrO powder and for the clean rooftop. The simulated differential spectrum of SrO shown in Fig. 3 is also presented for comparison.

Metrics