Abstract

A preliminary investigation is made into the possibility of applying the passive standoff detection technique to the identification of radiological and related products. This work is based on laboratory measurements of the diffuse reflectance from a number of products, including U3O8, CsI, SrO, I2O5, and La2O3. These reflectances are incorporated into the MODTRAN4 radiative-transfer model to simulate the nadir radiance from surfaces consisting of these radiological or related materials. The simulations are performed for two situations: at an altitude of 1 m above the ground, to simulate the passive detection of nuclear products with a hand-held instrument, and at an altitude of 1 km, to simulate a passive sensor carried aboard an aircraft. The results of the simulations under idealized conditions, as well as the results of one measurement, show that the passive standoff detection of radiological products by Fourier-transform infrared radiometry may be possible.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (5)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription