Abstract

We report a ytterbium fiber laser mode locked at its 281st harmonic, which corresponds to a repetition rate greater than 10 GHz. The laser produces linearly polarized, 2-ps pulses with up to 38-mW of average output power. The mode-locked pulses are tunable over a 58-nm window centered on 1053 nm.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. V. Cautaerts, D. J. Richardson, R. Paschotta, and D. C. Hanna, Opt. Lett. 22, 316 (1997).
    [CrossRef] [PubMed]
  2. L. Lefort, J. H. V. Price, D. J. Richardson, G. J. Spüler, R. Paschotta, U. Keller, A. R. Fry, and J. Weston, Opt. Lett. 27, 291 (2002).
    [CrossRef]
  3. H. Lim, F. Ö. Ilday, and F. W. Wise, Opt. Lett. 28, 660 (2003).
    [CrossRef] [PubMed]
  4. O. G. Okhotnikov, L. Gomes, N. Xiang, T. Jouhti, and A. B. Grudinin, Opt. Lett. 28, 1522 (2003).
    [CrossRef] [PubMed]
  5. A. Liem, D. Nickel, J. Limpert, H. Zellmer, U. Griebner, S. Unger, A. Tünnermann, and G. Korn, Appl. Phys. B 71, 889 (2000).
    [CrossRef]
  6. J. E. Rothenberg, Appl. Opt. 39, 6931 (2000).
    [CrossRef]
  7. S. Lecomte, L. Krainer, R. Paschotta, M. J. P. Dymott, K. J. Weingarten, and U. Keller, Opt. Lett. 27, 1714 (2002).
    [CrossRef]
  8. J. D. Zuegel and D. W. Jacobs-Perkins, Appl. Opt. 43, 1946 (2004).
    [CrossRef] [PubMed]
  9. D. J. Kuizenga and A. E. Siegman, IEEE J. Quantum Electron. QE-6, 694 (1970).
    [CrossRef]
  10. F. X. Kärtner, D. Kopf, and U. Keller, J. Opt. Soc. Am. B 12, 486 (1995).
    [CrossRef]
  11. J. M. Roth, T. E. Murphy, and C. Xu, Opt. Lett. 27, 2076 (2002).
    [CrossRef]
  12. K. Mogi, K. Naganuma, and H. Yamada, Jpn. J. Appl. Phys. 27, 2070 (1988).
    [CrossRef]
  13. F. Rana, H. L. T. Lee, R. J. Ram, M. E. Grein, L. A. Jiang, E. P. Ippen, and H. A. Haus, J. Opt. Soc. Am. B 19, 2609 (2002).
    [CrossRef]
  14. D. von der Linde, Appl. Phys. B 39, 201 (1986).
    [CrossRef]

2004 (1)

2003 (2)

2002 (4)

2000 (2)

A. Liem, D. Nickel, J. Limpert, H. Zellmer, U. Griebner, S. Unger, A. Tünnermann, and G. Korn, Appl. Phys. B 71, 889 (2000).
[CrossRef]

J. E. Rothenberg, Appl. Opt. 39, 6931 (2000).
[CrossRef]

1997 (1)

1995 (1)

1988 (1)

K. Mogi, K. Naganuma, and H. Yamada, Jpn. J. Appl. Phys. 27, 2070 (1988).
[CrossRef]

1986 (1)

D. von der Linde, Appl. Phys. B 39, 201 (1986).
[CrossRef]

1970 (1)

D. J. Kuizenga and A. E. Siegman, IEEE J. Quantum Electron. QE-6, 694 (1970).
[CrossRef]

Cautaerts, V.

Dymott, M. J. P.

Fry, A. R.

Gomes, L.

Grein, M. E.

Griebner, U.

A. Liem, D. Nickel, J. Limpert, H. Zellmer, U. Griebner, S. Unger, A. Tünnermann, and G. Korn, Appl. Phys. B 71, 889 (2000).
[CrossRef]

Grudinin, A. B.

Hanna, D. C.

Haus, H. A.

Ilday, F. Ö.

Ippen, E. P.

Jacobs-Perkins, D. W.

Jiang, L. A.

Jouhti, T.

Kärtner, F. X.

Keller, U.

Kopf, D.

Korn, G.

A. Liem, D. Nickel, J. Limpert, H. Zellmer, U. Griebner, S. Unger, A. Tünnermann, and G. Korn, Appl. Phys. B 71, 889 (2000).
[CrossRef]

Krainer, L.

Kuizenga, D. J.

D. J. Kuizenga and A. E. Siegman, IEEE J. Quantum Electron. QE-6, 694 (1970).
[CrossRef]

Lecomte, S.

Lee, H. L. T.

Lefort, L.

Liem, A.

A. Liem, D. Nickel, J. Limpert, H. Zellmer, U. Griebner, S. Unger, A. Tünnermann, and G. Korn, Appl. Phys. B 71, 889 (2000).
[CrossRef]

Lim, H.

Limpert, J.

A. Liem, D. Nickel, J. Limpert, H. Zellmer, U. Griebner, S. Unger, A. Tünnermann, and G. Korn, Appl. Phys. B 71, 889 (2000).
[CrossRef]

Mogi, K.

K. Mogi, K. Naganuma, and H. Yamada, Jpn. J. Appl. Phys. 27, 2070 (1988).
[CrossRef]

Murphy, T. E.

Naganuma, K.

K. Mogi, K. Naganuma, and H. Yamada, Jpn. J. Appl. Phys. 27, 2070 (1988).
[CrossRef]

Nickel, D.

A. Liem, D. Nickel, J. Limpert, H. Zellmer, U. Griebner, S. Unger, A. Tünnermann, and G. Korn, Appl. Phys. B 71, 889 (2000).
[CrossRef]

Okhotnikov, O. G.

Paschotta, R.

Price, J. H. V.

Ram, R. J.

Rana, F.

Richardson, D. J.

Roth, J. M.

Rothenberg, J. E.

Siegman, A. E.

D. J. Kuizenga and A. E. Siegman, IEEE J. Quantum Electron. QE-6, 694 (1970).
[CrossRef]

Spüler, G. J.

Tünnermann, A.

A. Liem, D. Nickel, J. Limpert, H. Zellmer, U. Griebner, S. Unger, A. Tünnermann, and G. Korn, Appl. Phys. B 71, 889 (2000).
[CrossRef]

Unger, S.

A. Liem, D. Nickel, J. Limpert, H. Zellmer, U. Griebner, S. Unger, A. Tünnermann, and G. Korn, Appl. Phys. B 71, 889 (2000).
[CrossRef]

von der Linde, D.

D. von der Linde, Appl. Phys. B 39, 201 (1986).
[CrossRef]

Weingarten, K. J.

Weston, J.

Wise, F. W.

Xiang, N.

Xu, C.

Yamada, H.

K. Mogi, K. Naganuma, and H. Yamada, Jpn. J. Appl. Phys. 27, 2070 (1988).
[CrossRef]

Zellmer, H.

A. Liem, D. Nickel, J. Limpert, H. Zellmer, U. Griebner, S. Unger, A. Tünnermann, and G. Korn, Appl. Phys. B 71, 889 (2000).
[CrossRef]

Zuegel, J. D.

Appl. Opt. (2)

Appl. Phys. B (2)

A. Liem, D. Nickel, J. Limpert, H. Zellmer, U. Griebner, S. Unger, A. Tünnermann, and G. Korn, Appl. Phys. B 71, 889 (2000).
[CrossRef]

D. von der Linde, Appl. Phys. B 39, 201 (1986).
[CrossRef]

IEEE J. Quantum Electron. (1)

D. J. Kuizenga and A. E. Siegman, IEEE J. Quantum Electron. QE-6, 694 (1970).
[CrossRef]

J. Opt. Soc. Am. B (2)

Jpn. J. Appl. Phys. (1)

K. Mogi, K. Naganuma, and H. Yamada, Jpn. J. Appl. Phys. 27, 2070 (1988).
[CrossRef]

Opt. Lett. (6)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Laser cavity configuration: HR1, HR2, high-reflectivity mirrors; PBS1, PBS2, polarizing beam splitters; WDM, 976/1050-nm wavelength-division multiplexer. The double-sided arrows and the dots surrounded by circles represent the horizontal and vertical polarizations, respectively.

Fig. 2
Fig. 2

Mode-locked optical pulse spectrum and its associated sech2 fit (shown by the dashed curve). The dotted curve shows the corresponding Gaussian fit for comparison. Inset, superimposed mode-locked spectra illustrating the 1022–1080-nm tuning range.

Fig. 3
Fig. 3

Autocorrelation results. The fit was obtained by use of the TPA response to a 2-ps sech pulse.

Fig. 4
Fig. 4

Microwave spectrum of the laser versus detuning from the 10.31455-GHz modulation frequency. The horizontal axis is broken to show the closest supermode noise peak, which is detuned from the carrier by the fundamental repetition rate of the laser. Inset, dc contribution, 10.3GHz mode-locked repetition rate, and the repetition rate’s first harmonic located at 20.6 GHz. Note that the strength of the noise floor has increased in the inset as a result of the reduced resolution required to display such a broad frequency range.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

σ=12πfm2flfhLfdf1/2,

Metrics