Abstract

Simultaneous temperature and strain measurement with a distributed Brillouin loss system is proposed by use of the parameters Brillouin frequency, power, and bandwidth, for PANDA, bow-tie, and tiger polarization-maintaining fibers for the first time to our knowledge. The expressions for simultaneous temperature and strain sensing and the maximum errors and rms values of temperature and strain measurements are derived with three combinations of the parameters: (1) power and Brillouin frequency, (2) bandwidth and Brillouin frequency, and (3) bandwidth and Brillouin power. Our experiments demonstrate that simultaneous temperature and strain sensing at 20-cm spatial resolution for Brillouin frequency combined with bandwidth the strain/temperature resolutions are 39 µε/2 °C (PANDA), 126 µε/3 °C (bow tie), and 598 µε/16 °C (tiger); for the Brillouin frequency combined with power the strain/temperature resolutions are 153 µε/8 °C (PANDA) and 237 µε/4 °C (bow tie); and for the bandwidth combined with power the strain/temperature resolutions are 135 µε/38 °C (PANDA) and 195 µε/38 °C (bow tie).

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. X. Bao, D. J. Webb, and D. A. Jackson, Opt. Lett. 19, 141 (1994).
    [CrossRef]
  2. H. H. Kee, G. P. Lees, and T. P. Newson, Opt. Lett. 25, 695 (2000).
    [CrossRef]
  3. T. R. Parker, M. Farhadiroushan, R. Feced, and V. A. Handerek, IEEE J. Quantum Electron. 34, 645 (1998).
    [CrossRef]
  4. J. Smith, A. Brown, M. DeMerchant, and X. Bao, Appl. Opt. 38, 5372 (1999).
    [CrossRef]
  5. L. Chen, J. Cameron, and X. Bao, Opt. Commun. 169, 69 (1999).
    [CrossRef]
  6. Q. Yu, X. Bao, and L. Chen, Opt. Lett. 29, 17 (2004).
    [CrossRef] [PubMed]

2004 (1)

2000 (1)

1999 (2)

J. Smith, A. Brown, M. DeMerchant, and X. Bao, Appl. Opt. 38, 5372 (1999).
[CrossRef]

L. Chen, J. Cameron, and X. Bao, Opt. Commun. 169, 69 (1999).
[CrossRef]

1998 (1)

T. R. Parker, M. Farhadiroushan, R. Feced, and V. A. Handerek, IEEE J. Quantum Electron. 34, 645 (1998).
[CrossRef]

1994 (1)

Bao, X.

Brown, A.

Cameron, J.

L. Chen, J. Cameron, and X. Bao, Opt. Commun. 169, 69 (1999).
[CrossRef]

Chen, L.

Q. Yu, X. Bao, and L. Chen, Opt. Lett. 29, 17 (2004).
[CrossRef] [PubMed]

L. Chen, J. Cameron, and X. Bao, Opt. Commun. 169, 69 (1999).
[CrossRef]

DeMerchant, M.

Farhadiroushan, M.

T. R. Parker, M. Farhadiroushan, R. Feced, and V. A. Handerek, IEEE J. Quantum Electron. 34, 645 (1998).
[CrossRef]

Feced, R.

T. R. Parker, M. Farhadiroushan, R. Feced, and V. A. Handerek, IEEE J. Quantum Electron. 34, 645 (1998).
[CrossRef]

Handerek, V. A.

T. R. Parker, M. Farhadiroushan, R. Feced, and V. A. Handerek, IEEE J. Quantum Electron. 34, 645 (1998).
[CrossRef]

Jackson, D. A.

Kee, H. H.

Lees, G. P.

Newson, T. P.

Parker, T. R.

T. R. Parker, M. Farhadiroushan, R. Feced, and V. A. Handerek, IEEE J. Quantum Electron. 34, 645 (1998).
[CrossRef]

Smith, J.

Webb, D. J.

Yu, Q.

Appl. Opt. (1)

IEEE J. Quantum Electron. (1)

T. R. Parker, M. Farhadiroushan, R. Feced, and V. A. Handerek, IEEE J. Quantum Electron. 34, 645 (1998).
[CrossRef]

Opt. Commun. (1)

L. Chen, J. Cameron, and X. Bao, Opt. Commun. 169, 69 (1999).
[CrossRef]

Opt. Lett. (3)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (2)

Fig. 1
Fig. 1

Strain dependence of Brillouin frequency at different temperatures for (a) PANDA fiber and (b) bow-tie fiber.

Fig. 2
Fig. 2

Strain dependence of (a) power, normalized to the largest value at 50°C, and (b) bandwidth (BW) in PANDA fiber.

Tables (2)

Tables Icon

Table 1 Temperature and Strain Coefficients of Brillouin Frequency, Power, and Bandwidth

Tables Icon

Table 2 Uncertainty of Temperature and Strain Calculated with Measured Brillouin Frequency (F), Power (P), and Bandwidth (B)

Equations (18)

Equations on this page are rendered with MathJax. Learn more.

ΔT=ΔvCPε-CvεΔPCPεCvT-CvεCPT,
Δε=ΔvCPT-CvTΔPCvεCPT-CPεCvT.
δΔTmax=δΔvCPε+CvεδΔPCvεCPT-CPεCvT,
δΔεmax=δΔvCPT+CvTδΔPCvεCPT-CPεCvT.
rmsΔT=rmsΔvCPεCPεCvT-CvεCPT2+Cvε rmsΔPCPεCvT-CvεCPT21/2,
rmsΔε=rmsΔvCPTCPεCvT-CvεCPT2+CvT rmsΔPCPεCvT-CvεCPT21/2.
ΔT=ΔvCBε-CvεΔBCBεCvT-CvεCBT,
Δε=ΔvCBT-CvTΔBCvεCBT-CBεCvT,
δΔTmax=δΔvCBε+CvεδΔBCBεCvT-CvεCBT,
δΔεmax=δΔvCBT+CvTδΔBCvεCBT-CvTCBε,
rmsΔT=rmsΔvCBεCvεCBT-CBεCvT2+Cvε rmsΔBCvεCBT-CBεCvT21/2,
rmsΔε=rmsΔvCBTCvεCBT-CBεCvT2+CvT rmsΔBCvεCBT-CBεCvT21/2.
ΔT=ΔBCPε-CBεΔPCPεCBT-CBεCPT,
Δε=ΔBCPT-CBTΔPCBεCPT-CPεCBT.
δΔTmax=δΔBCPε+CBεδΔPCPεCBT-CBεCPT,
δΔεmax=δΔBCPT+CBTδΔPCBεCPT-CvεCBT,
rmsΔT=rmsΔBCPεCPεCBT-CBεCPT2+CBε rmsΔPCPεCBT-CBεCPT21/2,
rmsΔε=rmsΔBCPTCPεCBT-CBεCPT2+CBT rmsΔPCPεCBT-CBεCPT21/2.

Metrics