Abstract

Biconical tapered single-mode fiber, which is common in many telecommunications components, offers an alternative sensor to typical optical fiber strain gauges that are susceptible to temperature and pressure effects and require expensive and sophisticated signal acquisition systems. Cavity ringdown spectroscopy, a technique commonly applied to high-sensitivity chemical analysis, offers detection sensitivity advantages that can be used to improve strain measurement with biconical tapers. Combining these two technologies in a spatially extended resonator, we demonstrate a minimum detectable change in ringdown time of 0.08%, corresponding to a minimum detectable displacement of 4.8 nm, and a sensitivity to strain as small as 79 n/Hz over a 5-mm taper length.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. B. Lee, Opt. Fiber Technol. 9, 57 (2003).
    [CrossRef]
  2. T. Valis, D. Hogg, and R. M. Measures, IEEE Photon. Technol. Lett. 2, 227 (1990).
    [CrossRef]
  3. S. M. Melle, K. Liu, and R. M. Measures, Appl. Opt. 32, 3601 (1993).
    [CrossRef] [PubMed]
  4. F. J. Arregui, I. R. Matias, and M. Lopez-Amo, Sensors Actuators 79, 90 (2000).
    [CrossRef]
  5. J. B. Dudek, P. B. Tarsa, A. Velasquez, M. Wladyslawski, P. Rabinowitz, and K. K. Lehmann, Anal. Chem. 75, 4599 (2003).
    [CrossRef]
  6. P. B. Tarsa, P. Rabinowitz, and K. K. Lehmann, Chem. Phys. Lett. 383, 297 (2004).
  7. M. Gupta, H. Jiao, and A. O’Keefe, Opt. Lett. 27, 1878 (2002).
    [CrossRef]
  8. T. von Lerber and M. W. Sigrist, Appl. Opt. 41, 3567 (2002).
    [CrossRef]
  9. J. D. Love, W. M. Henry, W. J. Stewart, R. J. Black, S. Lacroix, and F. Gonthier, IEE Proc. J 138, 343 (1991).
  10. R. J. Black, S. Lacroix, F. Gonthier, and J. D. Love, IEE Proc. J 138, 355 (1991).
  11. P. M. Shankar, L. C. Bobb, and H. D. Krumboltz, J. Lightwave Technol. 9, 832 (1991).
    [CrossRef]

2004 (1)

P. B. Tarsa, P. Rabinowitz, and K. K. Lehmann, Chem. Phys. Lett. 383, 297 (2004).

2003 (2)

B. Lee, Opt. Fiber Technol. 9, 57 (2003).
[CrossRef]

J. B. Dudek, P. B. Tarsa, A. Velasquez, M. Wladyslawski, P. Rabinowitz, and K. K. Lehmann, Anal. Chem. 75, 4599 (2003).
[CrossRef]

2002 (2)

2000 (1)

F. J. Arregui, I. R. Matias, and M. Lopez-Amo, Sensors Actuators 79, 90 (2000).
[CrossRef]

1993 (1)

1991 (3)

J. D. Love, W. M. Henry, W. J. Stewart, R. J. Black, S. Lacroix, and F. Gonthier, IEE Proc. J 138, 343 (1991).

R. J. Black, S. Lacroix, F. Gonthier, and J. D. Love, IEE Proc. J 138, 355 (1991).

P. M. Shankar, L. C. Bobb, and H. D. Krumboltz, J. Lightwave Technol. 9, 832 (1991).
[CrossRef]

1990 (1)

T. Valis, D. Hogg, and R. M. Measures, IEEE Photon. Technol. Lett. 2, 227 (1990).
[CrossRef]

Arregui, F. J.

F. J. Arregui, I. R. Matias, and M. Lopez-Amo, Sensors Actuators 79, 90 (2000).
[CrossRef]

Black, R. J.

J. D. Love, W. M. Henry, W. J. Stewart, R. J. Black, S. Lacroix, and F. Gonthier, IEE Proc. J 138, 343 (1991).

R. J. Black, S. Lacroix, F. Gonthier, and J. D. Love, IEE Proc. J 138, 355 (1991).

Bobb, L. C.

P. M. Shankar, L. C. Bobb, and H. D. Krumboltz, J. Lightwave Technol. 9, 832 (1991).
[CrossRef]

Dudek, J. B.

J. B. Dudek, P. B. Tarsa, A. Velasquez, M. Wladyslawski, P. Rabinowitz, and K. K. Lehmann, Anal. Chem. 75, 4599 (2003).
[CrossRef]

Gonthier, F.

R. J. Black, S. Lacroix, F. Gonthier, and J. D. Love, IEE Proc. J 138, 355 (1991).

J. D. Love, W. M. Henry, W. J. Stewart, R. J. Black, S. Lacroix, and F. Gonthier, IEE Proc. J 138, 343 (1991).

Gupta, M.

Henry, W. M.

J. D. Love, W. M. Henry, W. J. Stewart, R. J. Black, S. Lacroix, and F. Gonthier, IEE Proc. J 138, 343 (1991).

Hogg, D.

T. Valis, D. Hogg, and R. M. Measures, IEEE Photon. Technol. Lett. 2, 227 (1990).
[CrossRef]

Jiao, H.

Krumboltz, H. D.

P. M. Shankar, L. C. Bobb, and H. D. Krumboltz, J. Lightwave Technol. 9, 832 (1991).
[CrossRef]

Lacroix, S.

J. D. Love, W. M. Henry, W. J. Stewart, R. J. Black, S. Lacroix, and F. Gonthier, IEE Proc. J 138, 343 (1991).

R. J. Black, S. Lacroix, F. Gonthier, and J. D. Love, IEE Proc. J 138, 355 (1991).

Lee, B.

B. Lee, Opt. Fiber Technol. 9, 57 (2003).
[CrossRef]

Lehmann, K. K.

P. B. Tarsa, P. Rabinowitz, and K. K. Lehmann, Chem. Phys. Lett. 383, 297 (2004).

J. B. Dudek, P. B. Tarsa, A. Velasquez, M. Wladyslawski, P. Rabinowitz, and K. K. Lehmann, Anal. Chem. 75, 4599 (2003).
[CrossRef]

Liu, K.

Lopez-Amo, M.

F. J. Arregui, I. R. Matias, and M. Lopez-Amo, Sensors Actuators 79, 90 (2000).
[CrossRef]

Love, J. D.

J. D. Love, W. M. Henry, W. J. Stewart, R. J. Black, S. Lacroix, and F. Gonthier, IEE Proc. J 138, 343 (1991).

R. J. Black, S. Lacroix, F. Gonthier, and J. D. Love, IEE Proc. J 138, 355 (1991).

Matias, I. R.

F. J. Arregui, I. R. Matias, and M. Lopez-Amo, Sensors Actuators 79, 90 (2000).
[CrossRef]

Measures, R. M.

S. M. Melle, K. Liu, and R. M. Measures, Appl. Opt. 32, 3601 (1993).
[CrossRef] [PubMed]

T. Valis, D. Hogg, and R. M. Measures, IEEE Photon. Technol. Lett. 2, 227 (1990).
[CrossRef]

Melle, S. M.

O’Keefe, A.

Rabinowitz, P.

P. B. Tarsa, P. Rabinowitz, and K. K. Lehmann, Chem. Phys. Lett. 383, 297 (2004).

J. B. Dudek, P. B. Tarsa, A. Velasquez, M. Wladyslawski, P. Rabinowitz, and K. K. Lehmann, Anal. Chem. 75, 4599 (2003).
[CrossRef]

Shankar, P. M.

P. M. Shankar, L. C. Bobb, and H. D. Krumboltz, J. Lightwave Technol. 9, 832 (1991).
[CrossRef]

Sigrist, M. W.

Stewart, W. J.

J. D. Love, W. M. Henry, W. J. Stewart, R. J. Black, S. Lacroix, and F. Gonthier, IEE Proc. J 138, 343 (1991).

Tarsa, P. B.

P. B. Tarsa, P. Rabinowitz, and K. K. Lehmann, Chem. Phys. Lett. 383, 297 (2004).

J. B. Dudek, P. B. Tarsa, A. Velasquez, M. Wladyslawski, P. Rabinowitz, and K. K. Lehmann, Anal. Chem. 75, 4599 (2003).
[CrossRef]

Valis, T.

T. Valis, D. Hogg, and R. M. Measures, IEEE Photon. Technol. Lett. 2, 227 (1990).
[CrossRef]

Velasquez, A.

J. B. Dudek, P. B. Tarsa, A. Velasquez, M. Wladyslawski, P. Rabinowitz, and K. K. Lehmann, Anal. Chem. 75, 4599 (2003).
[CrossRef]

von Lerber, T.

Wladyslawski, M.

J. B. Dudek, P. B. Tarsa, A. Velasquez, M. Wladyslawski, P. Rabinowitz, and K. K. Lehmann, Anal. Chem. 75, 4599 (2003).
[CrossRef]

Anal. Chem. (1)

J. B. Dudek, P. B. Tarsa, A. Velasquez, M. Wladyslawski, P. Rabinowitz, and K. K. Lehmann, Anal. Chem. 75, 4599 (2003).
[CrossRef]

Appl. Opt. (2)

Chem. Phys. Lett. (1)

P. B. Tarsa, P. Rabinowitz, and K. K. Lehmann, Chem. Phys. Lett. 383, 297 (2004).

IEE Proc. J (2)

J. D. Love, W. M. Henry, W. J. Stewart, R. J. Black, S. Lacroix, and F. Gonthier, IEE Proc. J 138, 343 (1991).

R. J. Black, S. Lacroix, F. Gonthier, and J. D. Love, IEE Proc. J 138, 355 (1991).

IEEE Photon. Technol. Lett. (1)

T. Valis, D. Hogg, and R. M. Measures, IEEE Photon. Technol. Lett. 2, 227 (1990).
[CrossRef]

J. Lightwave Technol. (1)

P. M. Shankar, L. C. Bobb, and H. D. Krumboltz, J. Lightwave Technol. 9, 832 (1991).
[CrossRef]

Opt. Fiber Technol. (1)

B. Lee, Opt. Fiber Technol. 9, 57 (2003).
[CrossRef]

Opt. Lett. (1)

Sensors Actuators (1)

F. J. Arregui, I. R. Matias, and M. Lopez-Amo, Sensors Actuators 79, 90 (2000).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Schematic diagram of the extended optical fiber CRD strain-sensing apparatus (not drawn to scale).

Fig. 2
Fig. 2

CRD strain response. The linear region of the CRD signal, defined by the circled points, has R2=0.9935. With this taper, the linear range covers 45 µm, or 4500 µ, with a minimum detectable displacement of 74 nm, or 7.4 µ, over the 10-mm taper.

Fig. 3
Fig. 3

Comparison of biconical tapers with a 25µm waist, labeled by length. Shorter tapers, which have more severe taper angles, show increased sensitivity to strain but have a limited linear range.

Metrics