Abstract

Using volume current analysis, we describe the scattering from intracore fiber gratings with various nonuniformities and find that effects of cross-sectional and longitudinal variations can be roughly decoupled. We show that cross-sectional asymmetry affects the azimuthal pattern of scattering around the fiber and find good agreement with real gratings exhibiting UV-induced grating asymmetry across the core. We also show that longitudinal variations affect the spread of scatter angles with respect to the fiber axis, and this angular spread depends on the Fourier transform of the profiles of the grating period, the average index, and the index modulation of the grating.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. O. Hill and G. Meltz, J. Lightwave Technol. 15, 1263 (1997).
    [Crossref]
  2. K. Ennser, M. Ibsen, M. Durkin, M. N. Zervas, and R. I. Laming, IEEE Photon. Technol. Lett. 10, 1476 (1998).
    [Crossref]
  3. M. Sumetsky, P. I. Reyes, P. S. Westbrook, N. M. Litchinitser, B. J. Eggleton, Y. Li, R. Deshmukh, and C. Soccolich, Opt. Lett. 28, 777 (2003).
    [Crossref] [PubMed]
  4. G. Meltz, W. W. Morey, and W. H. Glenn, in Optical Fiber Communication, Vol. 1 of 1990 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1990), paper TuG1.
  5. M. J. Holmes, R. Kashyap, and R. Wyatt, IEEE J. Sel. Top. Quantum Electron. 5, 1353 (1999).
    [Crossref]
  6. J. L. Wagener, T. A. Strasser, J. R. Pedrazanni, J. DeMarco, and D. J. DiGiovanni, in the 23rd European Conference on Optical Communication, Conf. Publ. 448 (Institute of Electrical Engineers, London, 1997), p. 65.
  7. P. S. Westbrook, T. A. Strasser, and T. Erdogan, IEEE Photon. Technol. Lett. 12, 1352 (2000).
    [Crossref]
  8. I. Riant, L. Gasca, P. Sansonetti, G. Bourret, and J. Chesnoy, in Optical Fiber Communication Conference (OFC), Vol. 3 of 1999 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1999), p. 147.
  9. Y. Li, M. Froggatt, and T. Erdogan, J. Lightwave Technol. 19, 1580 (2001).
    [Crossref]
  10. M. Born and E. Wolf, Principles of Optics, 7th ed. (Cambridge U. Press, Cambridge, U.K., 1999), p. 78.
  11. I. A. White and A. W. Snyder, Appl. Opt. 16, 1470 (1977).
    [Crossref] [PubMed]
  12. K. Dossou, S. LaRochelle, and M. Fontaine, J. Lightwave Technol. 20, 1463 (2001).
    [Crossref]
  13. A. M. Vengsarkar, Q. Zhong, D. Innis, W. A. Reed, P. J. Lemaire, and S. G. Kosinski, Opt. Lett. 19, 1260 (1994).
    [Crossref] [PubMed]
  14. R. Kashyap, Fiber Bragg Gratings (Academic, London, 1999).

2003 (1)

2001 (2)

2000 (1)

P. S. Westbrook, T. A. Strasser, and T. Erdogan, IEEE Photon. Technol. Lett. 12, 1352 (2000).
[Crossref]

1999 (1)

M. J. Holmes, R. Kashyap, and R. Wyatt, IEEE J. Sel. Top. Quantum Electron. 5, 1353 (1999).
[Crossref]

1998 (1)

K. Ennser, M. Ibsen, M. Durkin, M. N. Zervas, and R. I. Laming, IEEE Photon. Technol. Lett. 10, 1476 (1998).
[Crossref]

1997 (1)

K. O. Hill and G. Meltz, J. Lightwave Technol. 15, 1263 (1997).
[Crossref]

1994 (1)

1977 (1)

Born, M.

M. Born and E. Wolf, Principles of Optics, 7th ed. (Cambridge U. Press, Cambridge, U.K., 1999), p. 78.

Bourret, G.

I. Riant, L. Gasca, P. Sansonetti, G. Bourret, and J. Chesnoy, in Optical Fiber Communication Conference (OFC), Vol. 3 of 1999 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1999), p. 147.

Chesnoy, J.

I. Riant, L. Gasca, P. Sansonetti, G. Bourret, and J. Chesnoy, in Optical Fiber Communication Conference (OFC), Vol. 3 of 1999 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1999), p. 147.

DeMarco, J.

J. L. Wagener, T. A. Strasser, J. R. Pedrazanni, J. DeMarco, and D. J. DiGiovanni, in the 23rd European Conference on Optical Communication, Conf. Publ. 448 (Institute of Electrical Engineers, London, 1997), p. 65.

Deshmukh, R.

DiGiovanni, D. J.

J. L. Wagener, T. A. Strasser, J. R. Pedrazanni, J. DeMarco, and D. J. DiGiovanni, in the 23rd European Conference on Optical Communication, Conf. Publ. 448 (Institute of Electrical Engineers, London, 1997), p. 65.

Dossou, K.

Durkin, M.

K. Ennser, M. Ibsen, M. Durkin, M. N. Zervas, and R. I. Laming, IEEE Photon. Technol. Lett. 10, 1476 (1998).
[Crossref]

Eggleton, B. J.

Ennser, K.

K. Ennser, M. Ibsen, M. Durkin, M. N. Zervas, and R. I. Laming, IEEE Photon. Technol. Lett. 10, 1476 (1998).
[Crossref]

Erdogan, T.

Y. Li, M. Froggatt, and T. Erdogan, J. Lightwave Technol. 19, 1580 (2001).
[Crossref]

P. S. Westbrook, T. A. Strasser, and T. Erdogan, IEEE Photon. Technol. Lett. 12, 1352 (2000).
[Crossref]

Fontaine, M.

Froggatt, M.

Gasca, L.

I. Riant, L. Gasca, P. Sansonetti, G. Bourret, and J. Chesnoy, in Optical Fiber Communication Conference (OFC), Vol. 3 of 1999 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1999), p. 147.

Glenn, W. H.

G. Meltz, W. W. Morey, and W. H. Glenn, in Optical Fiber Communication, Vol. 1 of 1990 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1990), paper TuG1.

Hill, K. O.

K. O. Hill and G. Meltz, J. Lightwave Technol. 15, 1263 (1997).
[Crossref]

Holmes, M. J.

M. J. Holmes, R. Kashyap, and R. Wyatt, IEEE J. Sel. Top. Quantum Electron. 5, 1353 (1999).
[Crossref]

Ibsen, M.

K. Ennser, M. Ibsen, M. Durkin, M. N. Zervas, and R. I. Laming, IEEE Photon. Technol. Lett. 10, 1476 (1998).
[Crossref]

Innis, D.

Kashyap, R.

M. J. Holmes, R. Kashyap, and R. Wyatt, IEEE J. Sel. Top. Quantum Electron. 5, 1353 (1999).
[Crossref]

R. Kashyap, Fiber Bragg Gratings (Academic, London, 1999).

Kosinski, S. G.

Laming, R. I.

K. Ennser, M. Ibsen, M. Durkin, M. N. Zervas, and R. I. Laming, IEEE Photon. Technol. Lett. 10, 1476 (1998).
[Crossref]

LaRochelle, S.

Lemaire, P. J.

Li, Y.

Litchinitser, N. M.

Meltz, G.

K. O. Hill and G. Meltz, J. Lightwave Technol. 15, 1263 (1997).
[Crossref]

G. Meltz, W. W. Morey, and W. H. Glenn, in Optical Fiber Communication, Vol. 1 of 1990 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1990), paper TuG1.

Morey, W. W.

G. Meltz, W. W. Morey, and W. H. Glenn, in Optical Fiber Communication, Vol. 1 of 1990 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1990), paper TuG1.

Pedrazanni, J. R.

J. L. Wagener, T. A. Strasser, J. R. Pedrazanni, J. DeMarco, and D. J. DiGiovanni, in the 23rd European Conference on Optical Communication, Conf. Publ. 448 (Institute of Electrical Engineers, London, 1997), p. 65.

Reed, W. A.

Reyes, P. I.

Riant, I.

I. Riant, L. Gasca, P. Sansonetti, G. Bourret, and J. Chesnoy, in Optical Fiber Communication Conference (OFC), Vol. 3 of 1999 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1999), p. 147.

Sansonetti, P.

I. Riant, L. Gasca, P. Sansonetti, G. Bourret, and J. Chesnoy, in Optical Fiber Communication Conference (OFC), Vol. 3 of 1999 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1999), p. 147.

Snyder, A. W.

Soccolich, C.

Strasser, T. A.

P. S. Westbrook, T. A. Strasser, and T. Erdogan, IEEE Photon. Technol. Lett. 12, 1352 (2000).
[Crossref]

J. L. Wagener, T. A. Strasser, J. R. Pedrazanni, J. DeMarco, and D. J. DiGiovanni, in the 23rd European Conference on Optical Communication, Conf. Publ. 448 (Institute of Electrical Engineers, London, 1997), p. 65.

Sumetsky, M.

Vengsarkar, A. M.

Wagener, J. L.

J. L. Wagener, T. A. Strasser, J. R. Pedrazanni, J. DeMarco, and D. J. DiGiovanni, in the 23rd European Conference on Optical Communication, Conf. Publ. 448 (Institute of Electrical Engineers, London, 1997), p. 65.

Westbrook, P. S.

White, I. A.

Wolf, E.

M. Born and E. Wolf, Principles of Optics, 7th ed. (Cambridge U. Press, Cambridge, U.K., 1999), p. 78.

Wyatt, R.

M. J. Holmes, R. Kashyap, and R. Wyatt, IEEE J. Sel. Top. Quantum Electron. 5, 1353 (1999).
[Crossref]

Zervas, M. N.

K. Ennser, M. Ibsen, M. Durkin, M. N. Zervas, and R. I. Laming, IEEE Photon. Technol. Lett. 10, 1476 (1998).
[Crossref]

Zhong, Q.

Appl. Opt. (1)

IEEE J. Sel. Top. Quantum Electron. (1)

M. J. Holmes, R. Kashyap, and R. Wyatt, IEEE J. Sel. Top. Quantum Electron. 5, 1353 (1999).
[Crossref]

IEEE Photon. Technol. Lett. (2)

P. S. Westbrook, T. A. Strasser, and T. Erdogan, IEEE Photon. Technol. Lett. 12, 1352 (2000).
[Crossref]

K. Ennser, M. Ibsen, M. Durkin, M. N. Zervas, and R. I. Laming, IEEE Photon. Technol. Lett. 10, 1476 (1998).
[Crossref]

J. Lightwave Technol. (3)

Opt. Lett. (2)

Other (5)

G. Meltz, W. W. Morey, and W. H. Glenn, in Optical Fiber Communication, Vol. 1 of 1990 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1990), paper TuG1.

M. Born and E. Wolf, Principles of Optics, 7th ed. (Cambridge U. Press, Cambridge, U.K., 1999), p. 78.

R. Kashyap, Fiber Bragg Gratings (Academic, London, 1999).

I. Riant, L. Gasca, P. Sansonetti, G. Bourret, and J. Chesnoy, in Optical Fiber Communication Conference (OFC), Vol. 3 of 1999 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1999), p. 147.

J. L. Wagener, T. A. Strasser, J. R. Pedrazanni, J. DeMarco, and D. J. DiGiovanni, in the 23rd European Conference on Optical Communication, Conf. Publ. 448 (Institute of Electrical Engineers, London, 1997), p. 65.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

(a) Grating scattering geometry. (b) Experimental setup for characterization of longitudinal grating variations. A polarization scrambler is used to remove the polarization dependence of the scattering.

Fig. 2
Fig. 2

Simulated azimuthal scattering pattern for different radial fiber profiles at λ0=1550 nm. We assume a uniform grating with Λz=0.55 µm and ξ=9°. (a) Index profile of the ideal step index and two real fibers. (b) Simulated azimuthal scattering distribution.

Fig. 3
Fig. 3

Changes of azimuthal pattern due to the grating asymmetry. (a) Simulation for an ideal grating, for a grating with UV absorption of αUV=0.15 µm-1, and for the measured result. Offsets added for clarity. (b) Grating profile along the ϕ=0° direction when αUV=0.15 µm-1. Inset, gray-scale representation of the crescent-shaped grating profile.

Fig. 4
Fig. 4

Longitudinal scattering as a function of scatter angle offset. (a) Grating without dc index compensation. (b) Grating with nominal 100% dc compensation. Both gratings have a Gaussian profile, a FWHM of 10 mm, and a maximum index modulation of 2.0×10-3.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

nr, ϕ, z=n0+δn cosKgz+Ktr sin ϕ+Φ.
n0=n0r, ϕ+ndcr, ϕ, z,    δn=δnr, ϕnacz,Φ=Φz.
Jr, ϕ, ziωε0fr, ϕgzexp-iΔz+iKtr sin ϕδˆ.
Ar, ϕ, z=iωμ0ε04π-+02π0afr, ϕgz×exp-iΔz+iKtr sin ϕ×exp-ik0n0z-z2+d21/2z-z2+d21/2×rdrdϕdzδˆ.
Ar, ϕ, zexpiπ/42λ0c-+Gk-Δ2πktr1/2Iϕ, k×exp-ikz-iktrdkδˆ,
Iϕ, k=0a02πfr, ϕexpiKtr sin ϕ+iktr cosϕ-ϕdϕdr.
Ar, ϕ, zexpiπ/42λ0cIϕ, Δ-+Gk-Δ2πktr1/2×exp-ikz-iktrdkδˆ.

Metrics