Abstract

A systematic experimental evaluation of polarization mode dispersion (PMD–) –induced polarization-dependent gain (PDG) in forward pumped Raman amplification in dispersion-shifted and in dispersion-compensating fiber was performed. Good agreement was obtained between the measured statistical parameters and the current analytical model for PDG fluctuation statistics. The probability distribution of the PDG was approximately Maxwellian within the range PMD >0.05 ps/km1/2. The interplay between PMD and gain fluctuations is discussed; random birefringence strongly reduces PDG fluctuations. However, the trade-off between reduction of the power penalties for PDG and increase of the penalties for PMD distortion precludes the use of PMD instead of source depolarization techniques for reduction of PDG.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. N. Islam, IEEE J. Sel. Top. Quantum Electron. 8, 548 (2002).
    [Crossref]
  2. R. H. Stolen, IEEE J. Quantum Electron. QE-15, 1157 (1979).
    [Crossref]
  3. D. J. Dougherty, F. X. Kärtner, H. A. Haus, and E. P. Ippen, Opt. Lett. 20, 31 (1995).
    [Crossref] [PubMed]
  4. T. Tokura, T. Kogure, T. Sugihara, K. Shimizu, T. Mizuochi, and K. Motoshima, in Optical Fiber Communication Conference (OFC), Vol. 70 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2002), pp. 645–646.
    [Crossref]
  5. P. Ebrahimi and A. E. Willner, in Conference on Lasers and Electro-Optics (CLEO), Vol. 56 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2001), pp. 143–144.
  6. S. Popov, E. Vanin, and G. Jacobsen, Opt. Lett. 27, 848 (2002).
    [Crossref]
  7. Q. Lin and G. P. Agrawal, Opt. Lett. 27, 2194 (2002).
    [Crossref]
  8. Q. Lin and G. P. Agrawal, Opt. Lett. 28, 227 (2003).
    [Crossref] [PubMed]
  9. A. Bessa dos Santos and J. P. von der Weid, IEEE Photon. Technol. Lett. 16, 452 (2004).
    [Crossref]
  10. “Guideline for the statistical specification of polarization mode dispersion on optical fiber cables,” (Telecommunications Industry Association, Arlington, Va., 1999).

2004 (1)

A. Bessa dos Santos and J. P. von der Weid, IEEE Photon. Technol. Lett. 16, 452 (2004).
[Crossref]

2003 (1)

2002 (3)

1995 (1)

1979 (1)

R. H. Stolen, IEEE J. Quantum Electron. QE-15, 1157 (1979).
[Crossref]

Agrawal, G. P.

Bessa dos Santos, A.

A. Bessa dos Santos and J. P. von der Weid, IEEE Photon. Technol. Lett. 16, 452 (2004).
[Crossref]

Dougherty, D. J.

Ebrahimi, P.

P. Ebrahimi and A. E. Willner, in Conference on Lasers and Electro-Optics (CLEO), Vol. 56 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2001), pp. 143–144.

Haus, H. A.

Ippen, E. P.

Islam, M. N.

M. N. Islam, IEEE J. Sel. Top. Quantum Electron. 8, 548 (2002).
[Crossref]

Jacobsen, G.

Kärtner, F. X.

Kogure, T.

T. Tokura, T. Kogure, T. Sugihara, K. Shimizu, T. Mizuochi, and K. Motoshima, in Optical Fiber Communication Conference (OFC), Vol. 70 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2002), pp. 645–646.
[Crossref]

Lin, Q.

Mizuochi, T.

T. Tokura, T. Kogure, T. Sugihara, K. Shimizu, T. Mizuochi, and K. Motoshima, in Optical Fiber Communication Conference (OFC), Vol. 70 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2002), pp. 645–646.
[Crossref]

Motoshima, K.

T. Tokura, T. Kogure, T. Sugihara, K. Shimizu, T. Mizuochi, and K. Motoshima, in Optical Fiber Communication Conference (OFC), Vol. 70 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2002), pp. 645–646.
[Crossref]

Popov, S.

Shimizu, K.

T. Tokura, T. Kogure, T. Sugihara, K. Shimizu, T. Mizuochi, and K. Motoshima, in Optical Fiber Communication Conference (OFC), Vol. 70 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2002), pp. 645–646.
[Crossref]

Stolen, R. H.

R. H. Stolen, IEEE J. Quantum Electron. QE-15, 1157 (1979).
[Crossref]

Sugihara, T.

T. Tokura, T. Kogure, T. Sugihara, K. Shimizu, T. Mizuochi, and K. Motoshima, in Optical Fiber Communication Conference (OFC), Vol. 70 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2002), pp. 645–646.
[Crossref]

Tokura, T.

T. Tokura, T. Kogure, T. Sugihara, K. Shimizu, T. Mizuochi, and K. Motoshima, in Optical Fiber Communication Conference (OFC), Vol. 70 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2002), pp. 645–646.
[Crossref]

Vanin, E.

von der Weid, J. P.

A. Bessa dos Santos and J. P. von der Weid, IEEE Photon. Technol. Lett. 16, 452 (2004).
[Crossref]

Willner, A. E.

P. Ebrahimi and A. E. Willner, in Conference on Lasers and Electro-Optics (CLEO), Vol. 56 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2001), pp. 143–144.

IEEE J. Quantum Electron. (1)

R. H. Stolen, IEEE J. Quantum Electron. QE-15, 1157 (1979).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

M. N. Islam, IEEE J. Sel. Top. Quantum Electron. 8, 548 (2002).
[Crossref]

IEEE Photon. Technol. Lett. (1)

A. Bessa dos Santos and J. P. von der Weid, IEEE Photon. Technol. Lett. 16, 452 (2004).
[Crossref]

Opt. Lett. (4)

Other (3)

T. Tokura, T. Kogure, T. Sugihara, K. Shimizu, T. Mizuochi, and K. Motoshima, in Optical Fiber Communication Conference (OFC), Vol. 70 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2002), pp. 645–646.
[Crossref]

P. Ebrahimi and A. E. Willner, in Conference on Lasers and Electro-Optics (CLEO), Vol. 56 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2001), pp. 143–144.

“Guideline for the statistical specification of polarization mode dispersion on optical fiber cables,” (Telecommunications Industry Association, Arlington, Va., 1999).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Statistical distribution of the PDG of three fibers. Fiber a, top, is a top-level 8.5-km DS fiber that provides 3dB on–off gain. Fiber b, middle, is a good-quality 15-km DS fiber, providing 6dB on–off gain. Fiber c, bottom, is a high-PMD 10-km DCF that gives 10-dB on–off gain at our pump conditions. Solid curves are Maxwellian fits to the distribution. Dotted curves are Maxwellian fits including a fixed offset from the residual PDL of the components.

Fig. 2
Fig. 2

Normalized PDG as a function of the PMD coefficient. The curves were calculations from Eq. (1) at the fiber lengths shown.

Fig. 3
Fig. 3

Normalized rms width of the PDG distribution as a function of the PMD coefficient. The curves are calculations from relation (2) at the fiber lengths shown.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

PDG=8GπDpΩR1-αpLeff/2Leff1/2,
σPDG0.422PDG,

Metrics