Abstract

Recently, Dorn et al. [Phys. Rev. Lett. 91, 233901 (2003)] demonstrated the significance of radially polarized doughnut beams in obtaining very small focal spots (with an area of 0.26λ2) with high-numerical-aperture (NA) aplanatic microscope objectives. We propose two simple alternative ways to focus such radially polarized beams: a parabolic mirror and a flat diffractive lens. Because of their large apodization factor for a high NA, a significant further reduction in spot area (up to a factor of 1.76 at a NA of 1) compared with the aplanatic system can be achieved.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Quabis, R. Dorn, M. Eberler, O. Glöckl, and G. Leuchs, Opt. Commun. 179, 1 (2000).
    [CrossRef]
  2. S. Quabis, R. Dorn, M. Eberler, O. Glöckl, and G. Leuchs, Appl. Phys. B 72, 109 (2001).
    [CrossRef]
  3. R. Dorn, S. Quabis, and G. Leuchs, Phys. Rev. Lett. 91, 233901 (2003).
    [CrossRef]
  4. R. Oron, S. Blit, N. Davidson, A. A. Friesem, Z. Bomzon, and E. Hasman, Appl. Phys. Lett. 77, 3322 (2000).
    [CrossRef]
  5. B. Richards and E. Wolf, Proc. R. Soc. London Ser. A 253, 358 (1959).
    [CrossRef]
  6. E. Wolf and Y. Li, Opt. Commun. 39, 205 (1981).
    [CrossRef]
  7. R. Oron, J. L. Guedalia, N. Davidson, A. A. Friesem, and E. Hasman, Opt. Lett. 25, 439 (2000).
  8. C. J. R. Sheppard and P. Török, J. Mod. Opt. 44, 803 (1997).
  9. N. Bokor and N. Davidson, J. Opt. Soc. Am. A 19, 2479 (2002).
    [CrossRef]
  10. M. G. Moharam and T. K. Gaylord, J. Opt. Soc. Am. 72, 1385 (1982).
    [CrossRef]

2003 (1)

R. Dorn, S. Quabis, and G. Leuchs, Phys. Rev. Lett. 91, 233901 (2003).
[CrossRef]

2002 (1)

2001 (1)

S. Quabis, R. Dorn, M. Eberler, O. Glöckl, and G. Leuchs, Appl. Phys. B 72, 109 (2001).
[CrossRef]

2000 (3)

S. Quabis, R. Dorn, M. Eberler, O. Glöckl, and G. Leuchs, Opt. Commun. 179, 1 (2000).
[CrossRef]

R. Oron, S. Blit, N. Davidson, A. A. Friesem, Z. Bomzon, and E. Hasman, Appl. Phys. Lett. 77, 3322 (2000).
[CrossRef]

R. Oron, J. L. Guedalia, N. Davidson, A. A. Friesem, and E. Hasman, Opt. Lett. 25, 439 (2000).

1997 (1)

C. J. R. Sheppard and P. Török, J. Mod. Opt. 44, 803 (1997).

1982 (1)

1981 (1)

E. Wolf and Y. Li, Opt. Commun. 39, 205 (1981).
[CrossRef]

1959 (1)

B. Richards and E. Wolf, Proc. R. Soc. London Ser. A 253, 358 (1959).
[CrossRef]

Blit, S.

R. Oron, S. Blit, N. Davidson, A. A. Friesem, Z. Bomzon, and E. Hasman, Appl. Phys. Lett. 77, 3322 (2000).
[CrossRef]

Bokor, N.

Bomzon, Z.

R. Oron, S. Blit, N. Davidson, A. A. Friesem, Z. Bomzon, and E. Hasman, Appl. Phys. Lett. 77, 3322 (2000).
[CrossRef]

Davidson, N.

Dorn, R.

R. Dorn, S. Quabis, and G. Leuchs, Phys. Rev. Lett. 91, 233901 (2003).
[CrossRef]

S. Quabis, R. Dorn, M. Eberler, O. Glöckl, and G. Leuchs, Appl. Phys. B 72, 109 (2001).
[CrossRef]

S. Quabis, R. Dorn, M. Eberler, O. Glöckl, and G. Leuchs, Opt. Commun. 179, 1 (2000).
[CrossRef]

Eberler, M.

S. Quabis, R. Dorn, M. Eberler, O. Glöckl, and G. Leuchs, Appl. Phys. B 72, 109 (2001).
[CrossRef]

S. Quabis, R. Dorn, M. Eberler, O. Glöckl, and G. Leuchs, Opt. Commun. 179, 1 (2000).
[CrossRef]

Friesem, A. A.

R. Oron, S. Blit, N. Davidson, A. A. Friesem, Z. Bomzon, and E. Hasman, Appl. Phys. Lett. 77, 3322 (2000).
[CrossRef]

R. Oron, J. L. Guedalia, N. Davidson, A. A. Friesem, and E. Hasman, Opt. Lett. 25, 439 (2000).

Gaylord, T. K.

Glöckl, O.

S. Quabis, R. Dorn, M. Eberler, O. Glöckl, and G. Leuchs, Appl. Phys. B 72, 109 (2001).
[CrossRef]

S. Quabis, R. Dorn, M. Eberler, O. Glöckl, and G. Leuchs, Opt. Commun. 179, 1 (2000).
[CrossRef]

Guedalia, J. L.

Hasman, E.

R. Oron, J. L. Guedalia, N. Davidson, A. A. Friesem, and E. Hasman, Opt. Lett. 25, 439 (2000).

R. Oron, S. Blit, N. Davidson, A. A. Friesem, Z. Bomzon, and E. Hasman, Appl. Phys. Lett. 77, 3322 (2000).
[CrossRef]

Leuchs, G.

R. Dorn, S. Quabis, and G. Leuchs, Phys. Rev. Lett. 91, 233901 (2003).
[CrossRef]

S. Quabis, R. Dorn, M. Eberler, O. Glöckl, and G. Leuchs, Appl. Phys. B 72, 109 (2001).
[CrossRef]

S. Quabis, R. Dorn, M. Eberler, O. Glöckl, and G. Leuchs, Opt. Commun. 179, 1 (2000).
[CrossRef]

Li, Y.

E. Wolf and Y. Li, Opt. Commun. 39, 205 (1981).
[CrossRef]

Moharam, M. G.

Oron, R.

R. Oron, S. Blit, N. Davidson, A. A. Friesem, Z. Bomzon, and E. Hasman, Appl. Phys. Lett. 77, 3322 (2000).
[CrossRef]

R. Oron, J. L. Guedalia, N. Davidson, A. A. Friesem, and E. Hasman, Opt. Lett. 25, 439 (2000).

Quabis, S.

R. Dorn, S. Quabis, and G. Leuchs, Phys. Rev. Lett. 91, 233901 (2003).
[CrossRef]

S. Quabis, R. Dorn, M. Eberler, O. Glöckl, and G. Leuchs, Appl. Phys. B 72, 109 (2001).
[CrossRef]

S. Quabis, R. Dorn, M. Eberler, O. Glöckl, and G. Leuchs, Opt. Commun. 179, 1 (2000).
[CrossRef]

Richards, B.

B. Richards and E. Wolf, Proc. R. Soc. London Ser. A 253, 358 (1959).
[CrossRef]

Sheppard, C. J. R.

C. J. R. Sheppard and P. Török, J. Mod. Opt. 44, 803 (1997).

Török, P.

C. J. R. Sheppard and P. Török, J. Mod. Opt. 44, 803 (1997).

Wolf, E.

E. Wolf and Y. Li, Opt. Commun. 39, 205 (1981).
[CrossRef]

B. Richards and E. Wolf, Proc. R. Soc. London Ser. A 253, 358 (1959).
[CrossRef]

Appl. Phys. B (1)

S. Quabis, R. Dorn, M. Eberler, O. Glöckl, and G. Leuchs, Appl. Phys. B 72, 109 (2001).
[CrossRef]

Appl. Phys. Lett. (1)

R. Oron, S. Blit, N. Davidson, A. A. Friesem, Z. Bomzon, and E. Hasman, Appl. Phys. Lett. 77, 3322 (2000).
[CrossRef]

J. Mod. Opt. (1)

C. J. R. Sheppard and P. Török, J. Mod. Opt. 44, 803 (1997).

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. A (1)

Opt. Commun. (2)

S. Quabis, R. Dorn, M. Eberler, O. Glöckl, and G. Leuchs, Opt. Commun. 179, 1 (2000).
[CrossRef]

E. Wolf and Y. Li, Opt. Commun. 39, 205 (1981).
[CrossRef]

Opt. Lett. (1)

Phys. Rev. Lett. (1)

R. Dorn, S. Quabis, and G. Leuchs, Phys. Rev. Lett. 91, 233901 (2003).
[CrossRef]

Proc. R. Soc. London Ser. A (1)

B. Richards and E. Wolf, Proc. R. Soc. London Ser. A 253, 358 (1959).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Apodization factor A2θ as a function of focusing angle θ for the AL (solid curve), the PM (dotted curve), and the FDL (dashed curve).

Fig. 2
Fig. 2

Normalized intensity at a NA of 0.98 of the total (dots), longitudinal (circles), and transverse (crosses) electric field components calculated for the AL [(a) and (d)], PM [(b) and (e)], and FDL [(c) and (f)], respectively: (a)–(c) without an annular aperture; (d)–(f) with the annular aperture described in the text.

Fig. 3
Fig. 3

Total spot area in units of λ2 as a function of NA (a) with and (b) without the annular aperture for the AL (solid curve), PM (dotted curve), and FDL (dashed curve).

Fig. 4
Fig. 4

Spot area of the longitudinal intensity component in units of λ2 as a function of NA (a) with and (b) without the annular aperture for the AL (solid curve), PM (dotted curve), and FDL (dashed curve).

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

EP= -iλΩA1θA2θaθ, ϕ×expiksxx+syy+szzdsxdsysz.

Metrics