Abstract

A phase-shifting electronic speckle pattern shearing interferometer with a very simple shearing device is proposed. Two partially reflective glass plates are used to introduce the shear in this new interferometer. The reflection coefficients of the coatings on the two plates are 0.3 and 0.7. The distance between the two glass plates controls the size of the shear. The proposed new interferometric system is simple, flexible, and low cost.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. Steinchen and L. Yang, Digital Shearography: Theory and Application of Digital Speckle Pattern Shearing Interferometry (SPIE Press, Bellingham, Wash., 2003).
  2. R. S. Sirohi, ed., Speckle Metrology (Marcel Dekker, New York, 1993), pp. 99–156.
  3. J. C. Wyant, Opt. Commun. 19, 120 (1976).
    [Crossref]
  4. M. Owner-Petersen, J. Opt. Soc. Am. A 8, 1082 (1991).
    [Crossref]
  5. C. M. Vest, Holographic Interferometry (Wiley, New York, 1979).
  6. Y. Y. Hung and C. Y. Liang, Appl. Opt. 10, 1046 (1979).
    [Crossref]
  7. P. K. Rastogi, ed., Digital Speckle Pattern Interferometry and Related Techniques (Wiley, New York, 2001).
  8. EspiTest Software developed by Andreas Langhoff ( http://www.daedalussoft.com ) and Maurice Whelan, 1998, European Commission, Joint Research Centre, Ispra, Italy.

1991 (1)

1979 (1)

Y. Y. Hung and C. Y. Liang, Appl. Opt. 10, 1046 (1979).
[Crossref]

1976 (1)

J. C. Wyant, Opt. Commun. 19, 120 (1976).
[Crossref]

Hung, Y. Y.

Y. Y. Hung and C. Y. Liang, Appl. Opt. 10, 1046 (1979).
[Crossref]

Langhoff, Andreas

EspiTest Software developed by Andreas Langhoff ( http://www.daedalussoft.com ) and Maurice Whelan, 1998, European Commission, Joint Research Centre, Ispra, Italy.

Liang, C. Y.

Y. Y. Hung and C. Y. Liang, Appl. Opt. 10, 1046 (1979).
[Crossref]

Owner-Petersen, M.

Steinchen, W.

W. Steinchen and L. Yang, Digital Shearography: Theory and Application of Digital Speckle Pattern Shearing Interferometry (SPIE Press, Bellingham, Wash., 2003).

Vest, C. M.

C. M. Vest, Holographic Interferometry (Wiley, New York, 1979).

Whelan, Maurice

EspiTest Software developed by Andreas Langhoff ( http://www.daedalussoft.com ) and Maurice Whelan, 1998, European Commission, Joint Research Centre, Ispra, Italy.

Wyant, J. C.

J. C. Wyant, Opt. Commun. 19, 120 (1976).
[Crossref]

Yang, L.

W. Steinchen and L. Yang, Digital Shearography: Theory and Application of Digital Speckle Pattern Shearing Interferometry (SPIE Press, Bellingham, Wash., 2003).

Appl. Opt. (1)

Y. Y. Hung and C. Y. Liang, Appl. Opt. 10, 1046 (1979).
[Crossref]

J. Opt. Soc. Am. A (1)

Opt. Commun. (1)

J. C. Wyant, Opt. Commun. 19, 120 (1976).
[Crossref]

Other (5)

P. K. Rastogi, ed., Digital Speckle Pattern Interferometry and Related Techniques (Wiley, New York, 2001).

EspiTest Software developed by Andreas Langhoff ( http://www.daedalussoft.com ) and Maurice Whelan, 1998, European Commission, Joint Research Centre, Ispra, Italy.

C. M. Vest, Holographic Interferometry (Wiley, New York, 1979).

W. Steinchen and L. Yang, Digital Shearography: Theory and Application of Digital Speckle Pattern Shearing Interferometry (SPIE Press, Bellingham, Wash., 2003).

R. S. Sirohi, ed., Speckle Metrology (Marcel Dekker, New York, 1993), pp. 99–156.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Schematic diagram of the ESPSI system with two partially reflective glass plates as a shearing element: I and I are the laterally sheared images of O on the CCD faceplate.

Fig. 2
Fig. 2

Scheme of the FRP sample.

Fig. 3
Fig. 3

ESPSI fringes on the FRP beam during bending, recorded with the ESPSI system with two glass plates under deflection of 20 µm: (a) ESPSI fringes, (b) wrapped phase map, (c) unwrapped phase map, (d) pseudo-three-dimensional plot of the phase distribution.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

Φ=2πλnL-β,
Δ=Φλδλ+Φnδn+ΦLδL=-2πLnλ2δλ+2πLλδn+2πnλδL,
Δ=2πλAδu+Bδv+Cδw,
Δ=2πλAux+Bvx+Cwx.
Δ=2πλAux+Cwx.

Metrics