Abstract

By adjusting the spatial coherence of a quasi-monochromatic beam, one can control the distance between two volumes of coherence. We propose to use such a beam in a typical scattering experiment and present a method for determining the degree of spatial correlation of a quasi-homogeneous medium by recording the scattered intensity in only one direction.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. Wolf, in Vol. 3 of Trends in Optics, A. Consortini, ed. (Academic, San Diego, Calif., 1996), pp. 83–110.
    [CrossRef]
  2. D. G. Fisher and E. Wolf, Opt. Commun. 133, 17 (1997).
    [CrossRef]
  3. P. M. Voyles, J. M. Gibson, and M. M. J. Treacy, J. Electron Microsc. 49, 259 (2000).
    [CrossRef]
  4. J. Rosen and M. Takeda, Appl. Opt. 39, 4107 (2000).
    [CrossRef]
  5. W. H. Carter and E. Wolf, Opt. Commun. 67, 85 (1988).
    [CrossRef]
  6. J. Rosen and A. Yariv, Opt. Commun. 117, 8 (1995).
    [CrossRef]
  7. A. Zarubin, Opt. Commun. 100, 491 (1993).
    [CrossRef]
  8. L. Mandel and E. Wolf, Optical Coherence and Quantum Optics (Cambridge U. Press, Cambridge, England, 1995), Chap. 3, pp. 97–102.

2000 (2)

P. M. Voyles, J. M. Gibson, and M. M. J. Treacy, J. Electron Microsc. 49, 259 (2000).
[CrossRef]

J. Rosen and M. Takeda, Appl. Opt. 39, 4107 (2000).
[CrossRef]

1997 (1)

D. G. Fisher and E. Wolf, Opt. Commun. 133, 17 (1997).
[CrossRef]

1995 (1)

J. Rosen and A. Yariv, Opt. Commun. 117, 8 (1995).
[CrossRef]

1993 (1)

A. Zarubin, Opt. Commun. 100, 491 (1993).
[CrossRef]

1988 (1)

W. H. Carter and E. Wolf, Opt. Commun. 67, 85 (1988).
[CrossRef]

Carter, W. H.

W. H. Carter and E. Wolf, Opt. Commun. 67, 85 (1988).
[CrossRef]

Fisher, D. G.

D. G. Fisher and E. Wolf, Opt. Commun. 133, 17 (1997).
[CrossRef]

Gibson, J. M.

P. M. Voyles, J. M. Gibson, and M. M. J. Treacy, J. Electron Microsc. 49, 259 (2000).
[CrossRef]

Mandel, L.

L. Mandel and E. Wolf, Optical Coherence and Quantum Optics (Cambridge U. Press, Cambridge, England, 1995), Chap. 3, pp. 97–102.

Rosen, J.

J. Rosen and M. Takeda, Appl. Opt. 39, 4107 (2000).
[CrossRef]

J. Rosen and A. Yariv, Opt. Commun. 117, 8 (1995).
[CrossRef]

Takeda, M.

Treacy, M. M. J.

P. M. Voyles, J. M. Gibson, and M. M. J. Treacy, J. Electron Microsc. 49, 259 (2000).
[CrossRef]

Voyles, P. M.

P. M. Voyles, J. M. Gibson, and M. M. J. Treacy, J. Electron Microsc. 49, 259 (2000).
[CrossRef]

Wolf, E.

D. G. Fisher and E. Wolf, Opt. Commun. 133, 17 (1997).
[CrossRef]

W. H. Carter and E. Wolf, Opt. Commun. 67, 85 (1988).
[CrossRef]

E. Wolf, in Vol. 3 of Trends in Optics, A. Consortini, ed. (Academic, San Diego, Calif., 1996), pp. 83–110.
[CrossRef]

L. Mandel and E. Wolf, Optical Coherence and Quantum Optics (Cambridge U. Press, Cambridge, England, 1995), Chap. 3, pp. 97–102.

Yariv, A.

J. Rosen and A. Yariv, Opt. Commun. 117, 8 (1995).
[CrossRef]

Zarubin, A.

A. Zarubin, Opt. Commun. 100, 491 (1993).
[CrossRef]

Appl. Opt. (1)

J. Electron Microsc. (1)

P. M. Voyles, J. M. Gibson, and M. M. J. Treacy, J. Electron Microsc. 49, 259 (2000).
[CrossRef]

Opt. Commun. (4)

W. H. Carter and E. Wolf, Opt. Commun. 67, 85 (1988).
[CrossRef]

J. Rosen and A. Yariv, Opt. Commun. 117, 8 (1995).
[CrossRef]

A. Zarubin, Opt. Commun. 100, 491 (1993).
[CrossRef]

D. G. Fisher and E. Wolf, Opt. Commun. 133, 17 (1997).
[CrossRef]

Other (2)

E. Wolf, in Vol. 3 of Trends in Optics, A. Consortini, ed. (Academic, San Diego, Calif., 1996), pp. 83–110.
[CrossRef]

L. Mandel and E. Wolf, Optical Coherence and Quantum Optics (Cambridge U. Press, Cambridge, England, 1995), Chap. 3, pp. 97–102.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (1)

Fig. 1
Fig. 1

Typical scattering configuration for variable coherence tomography.

Equations (13)

Equations on this page are rendered with MathJax. Learn more.

Usru,ω=expikrrVFr,ωUir,ω×exp-iku·rd3r,
Wαr1,r2,ω=Uα*r1,ωUαr2,ωU,
Wir1,r2=Iir1+r22μiΔr,
CFr1,r2=F*r1Fr2FSFr1+r22μFr1-r2,
Isru=1r2VVSFr1+r22×μFΔrIir1+r22×μiΔrexpiku·Δrd3r1d3r2.
μiΔr=exp-ikΔzI0ξ,ηexpi2πλfξΔx+ηΔy+iπΔzλf2ξ2+η2dξdηI0ξ,ηdξdη,
I0ξ,η=121+m cos2πξ-x02+η-y02α2-βDiskξ2+η2R.
μiΔr=exp-ikΔzgΔr+m2expiϕΔr0-kΔzgΔr+Δr0+m2exp-iϕΔr0+kΔzgΔr-Δr0,
gΔr=12Diskξ2+η2Rexpi2πλfξΔx+ηΔy+iπΔzλf2ξ2+η2dξdηI0ξ,ηdξdη.
Isru,Δr0=DIGku,01+mGku,Δr0Gku,0×cosku-z·Δr0-ϕΔr0-ϕGku,Δr0-ϕGku,0,
DI=1r2VSFrIird3r.
Gku,Δr0=μFr-Δr0grexpiku-z·rd3r,
Isru,Δr0=DIGku,01+mμFΔr0×cosku-z·Δr0-ϕΔr0-ϕμF-Δr0.

Metrics