Abstract

We propose a method for displaying micro-objects in space that is based on three-dimensional (3D) integral imaging, in which elemental images are calculated from a two-dimensional sampling of the optical field along different depths by use of confocal scanning microscopy. Experimental results are presented to demonstrate that a uniformly magnified 3D biological specimen can be displayed in space, and thus integral imaging can be used for 3D display of confocal microscopy. To the best of our knowledge, this is the first report of 3D integral imaging of (semitransparent) micro-objects.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. W. Lichtman, Sci. Am. 271, 30 (1994).
    [CrossRef]
  2. G. Lippmann, C. R. Acad. Sci. 146, 446 (1908).
  3. C. B. Burckhardt, J. Opt. Soc. Am 58, 71 (1968).
  4. F. Okano, H. Hoshino, J. Arai, and I. Yuyama, Appl. Opt. 36, 1598 (1997).
    [CrossRef] [PubMed]
  5. M. Born and E. Wolf, Principles of Optics, 6th ed. (Pergamon, Oxford, 1980), pp. 152–153.
  6. J.-S. Jang, F. Jin, and B. Javidi, Opt. Lett. 28, 1421 (2003).
    [CrossRef] [PubMed]
  7. T. Okoshi, Proc. IEEE 68, 548 (1980).
    [CrossRef]
  8. T. Yamazaki, K. Kamijo, and S. Fukuzumi, in Proceedings of the International Display Research Conference (Society for Information Display, San Jose, Calif., 1989), pp. 606–609.
  9. J.-S. Jang and B. Javidi, Appl. Opt. 42, 1996 (2003).
    [CrossRef] [PubMed]
  10. Animation available at http://science.csustan.edu/confocal/Images/Animation/grapestamentetrad.htm.
  11. J.-S. Jang and B. Javidi, Appl. Opt. 41, 4866 (2002).
    [CrossRef] [PubMed]
  12. J.-S. Jang, Y.-S. Oh, and B. Javidi, Opt. Express 12, 557 (2004), http://www.opticsexpress.org.
    [CrossRef] [PubMed]
  13. H. Hoshino, F. Okano, H. Isono, and I. Yuyama, J. Opt. Soc. Am. A 15, 2059 (1998).
    [CrossRef]
  14. J.-S. Jang and B. Javidi, Opt. Lett. 27, 324 (2002).
    [CrossRef]

2004

2003

2002

1998

1997

1994

J. W. Lichtman, Sci. Am. 271, 30 (1994).
[CrossRef]

1989

T. Yamazaki, K. Kamijo, and S. Fukuzumi, in Proceedings of the International Display Research Conference (Society for Information Display, San Jose, Calif., 1989), pp. 606–609.

1980

M. Born and E. Wolf, Principles of Optics, 6th ed. (Pergamon, Oxford, 1980), pp. 152–153.

T. Okoshi, Proc. IEEE 68, 548 (1980).
[CrossRef]

1968

C. B. Burckhardt, J. Opt. Soc. Am 58, 71 (1968).

1908

G. Lippmann, C. R. Acad. Sci. 146, 446 (1908).

Arai, J.

Born, M.

M. Born and E. Wolf, Principles of Optics, 6th ed. (Pergamon, Oxford, 1980), pp. 152–153.

Burckhardt, C. B.

C. B. Burckhardt, J. Opt. Soc. Am 58, 71 (1968).

Fukuzumi, S.

T. Yamazaki, K. Kamijo, and S. Fukuzumi, in Proceedings of the International Display Research Conference (Society for Information Display, San Jose, Calif., 1989), pp. 606–609.

Hoshino, H.

Isono, H.

Jang, J.-S.

Javidi, B.

Jin, F.

Kamijo, K.

T. Yamazaki, K. Kamijo, and S. Fukuzumi, in Proceedings of the International Display Research Conference (Society for Information Display, San Jose, Calif., 1989), pp. 606–609.

Lichtman, J. W.

J. W. Lichtman, Sci. Am. 271, 30 (1994).
[CrossRef]

Lippmann, G.

G. Lippmann, C. R. Acad. Sci. 146, 446 (1908).

Oh, Y.-S.

Okano, F.

Okoshi, T.

T. Okoshi, Proc. IEEE 68, 548 (1980).
[CrossRef]

Wolf, E.

M. Born and E. Wolf, Principles of Optics, 6th ed. (Pergamon, Oxford, 1980), pp. 152–153.

Yamazaki, T.

T. Yamazaki, K. Kamijo, and S. Fukuzumi, in Proceedings of the International Display Research Conference (Society for Information Display, San Jose, Calif., 1989), pp. 606–609.

Yuyama, I.

Appl. Opt.

C. R. Acad. Sci.

G. Lippmann, C. R. Acad. Sci. 146, 446 (1908).

J. Opt. Soc. Am

C. B. Burckhardt, J. Opt. Soc. Am 58, 71 (1968).

J. Opt. Soc. Am. A

Opt. Express

Opt. Lett.

Proc. IEEE

T. Okoshi, Proc. IEEE 68, 548 (1980).
[CrossRef]

Sci. Am.

J. W. Lichtman, Sci. Am. 271, 30 (1994).
[CrossRef]

Other

T. Yamazaki, K. Kamijo, and S. Fukuzumi, in Proceedings of the International Display Research Conference (Society for Information Display, San Jose, Calif., 1989), pp. 606–609.

Animation available at http://science.csustan.edu/confocal/Images/Animation/grapestamentetrad.htm.

M. Born and E. Wolf, Principles of Optics, 6th ed. (Pergamon, Oxford, 1980), pp. 152–153.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Principle of 3D II. (a) Pickup process with a pinhole lens array. In the direct pickup process a lenslet array is used for high light efficiency. A pinhole lens array can be used when the pickup process is digitally synthesized to obtain elemental images according to ray optics. (b) Reconstruction of a 3D image with a lenslet array.

Fig. 2
Fig. 2

Computer pickup for given sectioning images and optical 3D image reconstruction in space. The longitudinal position of the pinhole array is set at z=0. Observers are assumed to be positioned at z>0. (a) Pickup for real 3D image display. Locations of sectioning images along the z axis, z1,z2,,zN, are positive values. (b) Pickup for virtual 3D image display. Locations of sectioning images along the z axis, z1,z2,,zN, are negative values. (c) Real 3D image display. (d) Virtual 3D image display.

Fig. 3
Fig. 3

Experimental results. (a) Sectioning images used in the experiments. (b) Synthesized elemental images.

Fig. 4
Fig. 4

Schematic diagram of an II projector used in the experiment.

Fig. 5
Fig. 5

Reconstructed 3D image displayed optically in space. As the viewing direction changes, the perspective varies continuously. (a) Left view. (b) Center view. (c) Right view.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

SCxi,yi,-g=1Mxi,yik=1NACkVCβkxi,βkyi,zk,
ACk=exp-αk,if C=13m=0k-1VCβmxi,βmyi,zm0 and k>11,otherwise,

Metrics