Abstract

We present a novel waveguide geometry for enhancing and confining light in a nanometer-wide low-index material. Light enhancement and confinement is caused by large discontinuity of the electric field at high-index-contrast interfaces. We show that by use of such a structure the field can be confined in a 50-nm-wide low-index region with a normalized intensity of 20 µm-2. This intensity is approximately 20 times higher than what can be achieved in SiO2 with conventional rectangular waveguides.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. K. Lee, D. R. Lim, L. C. Kimerling, J. Shin, and F. Cerrina, Opt. Lett. 26, 1888 (2001).
    [CrossRef]
  2. A. Sakai, G. Hara, and T. Baba, Proc. SPIE 4283, 610 (2001).
    [CrossRef]
  3. C. Manolatou, S. G. Johnson, S. Fan, P. R. Villeneuve, H. A. Haus, and J. D. Joannopoulos, J. Lightwave Technol. 17, 1682 (1999).
    [CrossRef]
  4. R. L. Espinola, R. U. Ahmad, F. Pizzuto, M. J. Steel, and R. M. Osgood, Opt. Express 8, 517 (2001), http://www.opticsexpress.org.
    [CrossRef] [PubMed]
  5. B. E. Little, J. S. Foresi, G. Steinmeyer, E. R. Thoen, S. T. Chu, H. A. Haus, E. P. Ippen, L. C. Kimerling, and W. Greene, IEEE Photon. Technol. Lett. 10, 549 (1998).
    [CrossRef]
  6. M. A. Duguay, Y. Kokubun, and T. L. Koch, Appl. Phys. Lett. 49, 13 (1986).
    [CrossRef]
  7. R. Bernini, S. Campopiano, L. Zeni, C. de Boer, and P. M. Sarro, in Proceedings of IEEE First International Conference on Sensors (Institute of Electrical and Electronics Engineers, New York, 2002), pp. 1160–1164.
  8. H. Schmidt, Y. Dongliang, and A. Hawkins, in Integrated Photonics Research, Postconference Digest, Vol. 92 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2003), paper ItuC2-1.
  9. R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. St. J. Russell, P. J. Roberts, and D. C. Allan, Science 285, 1537 (1999).
    [CrossRef] [PubMed]
  10. H. A. Jamid, Appl. Opt. 41, 1385 (2002).
    [CrossRef] [PubMed]
  11. S. G. Johnson, M. Ibanescu, M. Skorobogatiy, O. Weisberg, T. D. Engeness, M. Soljacic, S. A. Jacobs, J. D. Joannopoulos, and Y. Fink, Opt. Express 9, 748 (2001), http://www.opticsexpress.org.
    [CrossRef] [PubMed]
  12. C. L. Xu, W. P. Huang, M. S. Stern, and S. K. Chaudhuri, IEE Proc. Optoelectron. 141, 281 (1994).
    [CrossRef]

2003

H. Schmidt, Y. Dongliang, and A. Hawkins, in Integrated Photonics Research, Postconference Digest, Vol. 92 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2003), paper ItuC2-1.

2002

R. Bernini, S. Campopiano, L. Zeni, C. de Boer, and P. M. Sarro, in Proceedings of IEEE First International Conference on Sensors (Institute of Electrical and Electronics Engineers, New York, 2002), pp. 1160–1164.

H. A. Jamid, Appl. Opt. 41, 1385 (2002).
[CrossRef] [PubMed]

2001

1999

C. Manolatou, S. G. Johnson, S. Fan, P. R. Villeneuve, H. A. Haus, and J. D. Joannopoulos, J. Lightwave Technol. 17, 1682 (1999).
[CrossRef]

R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. St. J. Russell, P. J. Roberts, and D. C. Allan, Science 285, 1537 (1999).
[CrossRef] [PubMed]

1998

B. E. Little, J. S. Foresi, G. Steinmeyer, E. R. Thoen, S. T. Chu, H. A. Haus, E. P. Ippen, L. C. Kimerling, and W. Greene, IEEE Photon. Technol. Lett. 10, 549 (1998).
[CrossRef]

1994

C. L. Xu, W. P. Huang, M. S. Stern, and S. K. Chaudhuri, IEE Proc. Optoelectron. 141, 281 (1994).
[CrossRef]

1986

M. A. Duguay, Y. Kokubun, and T. L. Koch, Appl. Phys. Lett. 49, 13 (1986).
[CrossRef]

Ahmad, R. U.

Allan, D. C.

R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. St. J. Russell, P. J. Roberts, and D. C. Allan, Science 285, 1537 (1999).
[CrossRef] [PubMed]

Baba, T.

A. Sakai, G. Hara, and T. Baba, Proc. SPIE 4283, 610 (2001).
[CrossRef]

Bernini, R.

R. Bernini, S. Campopiano, L. Zeni, C. de Boer, and P. M. Sarro, in Proceedings of IEEE First International Conference on Sensors (Institute of Electrical and Electronics Engineers, New York, 2002), pp. 1160–1164.

Birks, T. A.

R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. St. J. Russell, P. J. Roberts, and D. C. Allan, Science 285, 1537 (1999).
[CrossRef] [PubMed]

Campopiano, S.

R. Bernini, S. Campopiano, L. Zeni, C. de Boer, and P. M. Sarro, in Proceedings of IEEE First International Conference on Sensors (Institute of Electrical and Electronics Engineers, New York, 2002), pp. 1160–1164.

Cerrina, F.

Chaudhuri, S. K.

C. L. Xu, W. P. Huang, M. S. Stern, and S. K. Chaudhuri, IEE Proc. Optoelectron. 141, 281 (1994).
[CrossRef]

Chu, S. T.

B. E. Little, J. S. Foresi, G. Steinmeyer, E. R. Thoen, S. T. Chu, H. A. Haus, E. P. Ippen, L. C. Kimerling, and W. Greene, IEEE Photon. Technol. Lett. 10, 549 (1998).
[CrossRef]

Cregan, R. F.

R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. St. J. Russell, P. J. Roberts, and D. C. Allan, Science 285, 1537 (1999).
[CrossRef] [PubMed]

de Boer, C.

R. Bernini, S. Campopiano, L. Zeni, C. de Boer, and P. M. Sarro, in Proceedings of IEEE First International Conference on Sensors (Institute of Electrical and Electronics Engineers, New York, 2002), pp. 1160–1164.

Dongliang, Y.

H. Schmidt, Y. Dongliang, and A. Hawkins, in Integrated Photonics Research, Postconference Digest, Vol. 92 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2003), paper ItuC2-1.

Duguay, M. A.

M. A. Duguay, Y. Kokubun, and T. L. Koch, Appl. Phys. Lett. 49, 13 (1986).
[CrossRef]

Engeness, T. D.

Espinola, R. L.

Fan, S.

Fink, Y.

Foresi, J. S.

B. E. Little, J. S. Foresi, G. Steinmeyer, E. R. Thoen, S. T. Chu, H. A. Haus, E. P. Ippen, L. C. Kimerling, and W. Greene, IEEE Photon. Technol. Lett. 10, 549 (1998).
[CrossRef]

Greene, W.

B. E. Little, J. S. Foresi, G. Steinmeyer, E. R. Thoen, S. T. Chu, H. A. Haus, E. P. Ippen, L. C. Kimerling, and W. Greene, IEEE Photon. Technol. Lett. 10, 549 (1998).
[CrossRef]

Hara, G.

A. Sakai, G. Hara, and T. Baba, Proc. SPIE 4283, 610 (2001).
[CrossRef]

Haus, H. A.

C. Manolatou, S. G. Johnson, S. Fan, P. R. Villeneuve, H. A. Haus, and J. D. Joannopoulos, J. Lightwave Technol. 17, 1682 (1999).
[CrossRef]

B. E. Little, J. S. Foresi, G. Steinmeyer, E. R. Thoen, S. T. Chu, H. A. Haus, E. P. Ippen, L. C. Kimerling, and W. Greene, IEEE Photon. Technol. Lett. 10, 549 (1998).
[CrossRef]

Hawkins, A.

H. Schmidt, Y. Dongliang, and A. Hawkins, in Integrated Photonics Research, Postconference Digest, Vol. 92 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2003), paper ItuC2-1.

Huang, W. P.

C. L. Xu, W. P. Huang, M. S. Stern, and S. K. Chaudhuri, IEE Proc. Optoelectron. 141, 281 (1994).
[CrossRef]

Ibanescu, M.

Ippen, E. P.

B. E. Little, J. S. Foresi, G. Steinmeyer, E. R. Thoen, S. T. Chu, H. A. Haus, E. P. Ippen, L. C. Kimerling, and W. Greene, IEEE Photon. Technol. Lett. 10, 549 (1998).
[CrossRef]

Jacobs, S. A.

Jamid, H. A.

Joannopoulos, J. D.

Johnson, S. G.

Kimerling, L. C.

K. K. Lee, D. R. Lim, L. C. Kimerling, J. Shin, and F. Cerrina, Opt. Lett. 26, 1888 (2001).
[CrossRef]

B. E. Little, J. S. Foresi, G. Steinmeyer, E. R. Thoen, S. T. Chu, H. A. Haus, E. P. Ippen, L. C. Kimerling, and W. Greene, IEEE Photon. Technol. Lett. 10, 549 (1998).
[CrossRef]

Knight, J. C.

R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. St. J. Russell, P. J. Roberts, and D. C. Allan, Science 285, 1537 (1999).
[CrossRef] [PubMed]

Koch, T. L.

M. A. Duguay, Y. Kokubun, and T. L. Koch, Appl. Phys. Lett. 49, 13 (1986).
[CrossRef]

Kokubun, Y.

M. A. Duguay, Y. Kokubun, and T. L. Koch, Appl. Phys. Lett. 49, 13 (1986).
[CrossRef]

Lee, K. K.

Lim, D. R.

Little, B. E.

B. E. Little, J. S. Foresi, G. Steinmeyer, E. R. Thoen, S. T. Chu, H. A. Haus, E. P. Ippen, L. C. Kimerling, and W. Greene, IEEE Photon. Technol. Lett. 10, 549 (1998).
[CrossRef]

Mangan, B. J.

R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. St. J. Russell, P. J. Roberts, and D. C. Allan, Science 285, 1537 (1999).
[CrossRef] [PubMed]

Manolatou, C.

Osgood, R. M.

Pizzuto, F.

Roberts, P. J.

R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. St. J. Russell, P. J. Roberts, and D. C. Allan, Science 285, 1537 (1999).
[CrossRef] [PubMed]

Russell, P. St. J.

R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. St. J. Russell, P. J. Roberts, and D. C. Allan, Science 285, 1537 (1999).
[CrossRef] [PubMed]

Sakai, A.

A. Sakai, G. Hara, and T. Baba, Proc. SPIE 4283, 610 (2001).
[CrossRef]

Sarro, P. M.

R. Bernini, S. Campopiano, L. Zeni, C. de Boer, and P. M. Sarro, in Proceedings of IEEE First International Conference on Sensors (Institute of Electrical and Electronics Engineers, New York, 2002), pp. 1160–1164.

Schmidt, H.

H. Schmidt, Y. Dongliang, and A. Hawkins, in Integrated Photonics Research, Postconference Digest, Vol. 92 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2003), paper ItuC2-1.

Shin, J.

Skorobogatiy, M.

Soljacic, M.

Steel, M. J.

Steinmeyer, G.

B. E. Little, J. S. Foresi, G. Steinmeyer, E. R. Thoen, S. T. Chu, H. A. Haus, E. P. Ippen, L. C. Kimerling, and W. Greene, IEEE Photon. Technol. Lett. 10, 549 (1998).
[CrossRef]

Stern, M. S.

C. L. Xu, W. P. Huang, M. S. Stern, and S. K. Chaudhuri, IEE Proc. Optoelectron. 141, 281 (1994).
[CrossRef]

Thoen, E. R.

B. E. Little, J. S. Foresi, G. Steinmeyer, E. R. Thoen, S. T. Chu, H. A. Haus, E. P. Ippen, L. C. Kimerling, and W. Greene, IEEE Photon. Technol. Lett. 10, 549 (1998).
[CrossRef]

Villeneuve, P. R.

Weisberg, O.

Xu, C. L.

C. L. Xu, W. P. Huang, M. S. Stern, and S. K. Chaudhuri, IEE Proc. Optoelectron. 141, 281 (1994).
[CrossRef]

Zeni, L.

R. Bernini, S. Campopiano, L. Zeni, C. de Boer, and P. M. Sarro, in Proceedings of IEEE First International Conference on Sensors (Institute of Electrical and Electronics Engineers, New York, 2002), pp. 1160–1164.

Appl. Opt.

Appl. Phys. Lett.

M. A. Duguay, Y. Kokubun, and T. L. Koch, Appl. Phys. Lett. 49, 13 (1986).
[CrossRef]

IEE Proc. Optoelectron.

C. L. Xu, W. P. Huang, M. S. Stern, and S. K. Chaudhuri, IEE Proc. Optoelectron. 141, 281 (1994).
[CrossRef]

IEEE Photon. Technol. Lett.

B. E. Little, J. S. Foresi, G. Steinmeyer, E. R. Thoen, S. T. Chu, H. A. Haus, E. P. Ippen, L. C. Kimerling, and W. Greene, IEEE Photon. Technol. Lett. 10, 549 (1998).
[CrossRef]

J. Lightwave Technol.

Opt. Express

Opt. Lett.

OSA Trends in Optics and Photonics Series

H. Schmidt, Y. Dongliang, and A. Hawkins, in Integrated Photonics Research, Postconference Digest, Vol. 92 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2003), paper ItuC2-1.

Proc. SPIE

A. Sakai, G. Hara, and T. Baba, Proc. SPIE 4283, 610 (2001).
[CrossRef]

Science

R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. St. J. Russell, P. J. Roberts, and D. C. Allan, Science 285, 1537 (1999).
[CrossRef] [PubMed]

Other

R. Bernini, S. Campopiano, L. Zeni, C. de Boer, and P. M. Sarro, in Proceedings of IEEE First International Conference on Sensors (Institute of Electrical and Electronics Engineers, New York, 2002), pp. 1160–1164.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Schematic of the slot waveguide structure (a) with infinite height and (b) with finite height.

Fig. 2
Fig. 2

Normalized transverse E-field (Ex) distribution of the fundamental TM eigenmode (solid curve) for the slab-based slot waveguide at λ0=1.55 µm, with nH=3.48, nS=nC=1.44, a=25 nm, and b=205 nm. Also shown are the individual slab waveguide TM eigenmodes (dotted and dashed–dotted curves).

Fig. 3
Fig. 3

Transverse E-field profile of the quasi-TE mode in a SOI-based slot waveguide. The origin of the coordinate system is located at the center of the waveguide, with a horizontal x axis and a vertical y axis. (a) Contour of the E-field amplitude and the E-field lines. (b) 3D surface plot of the E-field amplitude.

Fig. 4
Fig. 4

Normalized optical power in slot Pslot, normalized average optical intensity in slot Islot, and normalized average optical intensity in silicon ISi, for the fundamental quasi-TE eigenmode of the slot waveguide. All quantities are normalized with respect to the waveguide optical power.

Fig. 5
Fig. 5

Wavelength dependence of normalized optical power Pslot and normalized average optical intensity Islot in the slot, for wH=180 nm, wS=50 nm, and h=300 nm. Optimal values for the normalized optical intensity of alternative waveguide approaches are also indicated. ARROW, antiresonant reflecting optical waveguide; PBG, photonic bandgap.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

Exx=A1nS2coshγSx,x<a1nH2coshγSacosκHx-a+γSnS2κHsinhκx-a,a<x<b1nC2coshγSacosκHb-a+nH2γSnS2κHsinhγSasinκHb-aexp-γCx-b,x>b
A=A0k02nH2-κH2k0,
tanκHb-a-Φ=γSnH2κHnS2tanhγSa,

Metrics