Abstract

With a laser-excited acoustic wave as the carrier wave and by modulation of the light wavelength of a multikilohertz-repetition-rate optical parametric oscillator at a lower frequency than the acoustic frequency, we demonstrate a wavelength–amplitude double-modulation technique and achieve an enhancement factor of 35 in sensitivity in photoacoustic trace gas detection with the technique.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. F. Scudieri and M. Bertolotti, eds., Photoacoustic and Photothermal Phenomena: 10th International Conference, AIP Conference Proceedings463 (American Institute of Physics, Woodbury, N.Y., 1998).
  2. M. W. Sigrist, Rev. Sci. Instrum. 74, 486 (2003).
    [Crossref]
  3. E. I. Moses and C. L. Tang, Opt. Lett. 1, 115 (1977).
    [Crossref] [PubMed]
  4. G. C. Bjorklund, Opt. Lett. 5, 15 (1980).
    [Crossref]
  5. W. Lenth, Opt. Lett. 8, 575 (1983).
    [Crossref] [PubMed]
  6. D. E. Cooper and T. F. Gallagher, Opt. Lett. 9, 451 (1984).
    [Crossref] [PubMed]
  7. E. E. Eyler, S. Gangopadhyay, N. Melikechi, J. C. Bloch, and R. W. Field, Opt. Lett. 21, 225 (1996).
    [Crossref] [PubMed]
  8. G. Hancock, V. L. Kasyutich, and G. A. D. Ritchie, Opt. Lett. 27, 763 (2002).
    [Crossref]
  9. A. Miklós, Z. Bozoki, Y. Jiang, and M. Feher, Appl. Phys. B 58, 483 (1994).
    [Crossref]
  10. J. A. Silver, Appl. Opt. 31, 707 (1992).
    [Crossref] [PubMed]
  11. C.-S. Yu and A. H. Kung, J. Opt. Soc. Am. B 16, 2233 (1999).
    [Crossref]
  12. X.-M. Qian, T. Zhang, C. Y. Ng, A. H. Kung, and M. Ahmed, Rev. Sci. Instrum. 74, 2784 (2003).
    [Crossref]
  13. X.-M. Qian, A. H. Kung, T. Zhang, K. C. Lau, and C. Y. Ng, Phys. Rev. Lett. 91, 233001 (2003).
    [Crossref]
  14. “The HITRAN Database,” (Harvard University, Cambridge, Mass., January22, 2004), http://cfa-www.harvard.edu/HITRAN/ .
  15. A. Miklós, C.-H. Lim, W.-W. Hsiang, G.-C. Liang, A. H. Kung, A. Schmohl, and P. Hess, Appl. Opt. 41, 2985 (2002).
    [Crossref]
  16. M. M. J. W. van Harpen, S. Li, S. E. Bisson, and F. J. M. Harran, Appl. Phys. Lett. 81, 1157 (2002).
    [Crossref]
  17. T. G. Spence, C. C. Harb, B. A. Paldus, R. N. Zare, B. Wilke, and R. L. Byer, Rev. Sci. Instrum. 71, 347 (2000).
    [Crossref]

2003 (3)

M. W. Sigrist, Rev. Sci. Instrum. 74, 486 (2003).
[Crossref]

X.-M. Qian, T. Zhang, C. Y. Ng, A. H. Kung, and M. Ahmed, Rev. Sci. Instrum. 74, 2784 (2003).
[Crossref]

X.-M. Qian, A. H. Kung, T. Zhang, K. C. Lau, and C. Y. Ng, Phys. Rev. Lett. 91, 233001 (2003).
[Crossref]

2002 (3)

2000 (1)

T. G. Spence, C. C. Harb, B. A. Paldus, R. N. Zare, B. Wilke, and R. L. Byer, Rev. Sci. Instrum. 71, 347 (2000).
[Crossref]

1999 (1)

1996 (1)

1994 (1)

A. Miklós, Z. Bozoki, Y. Jiang, and M. Feher, Appl. Phys. B 58, 483 (1994).
[Crossref]

1992 (1)

1984 (1)

1983 (1)

1980 (1)

1977 (1)

Ahmed, M.

X.-M. Qian, T. Zhang, C. Y. Ng, A. H. Kung, and M. Ahmed, Rev. Sci. Instrum. 74, 2784 (2003).
[Crossref]

Bisson, S. E.

M. M. J. W. van Harpen, S. Li, S. E. Bisson, and F. J. M. Harran, Appl. Phys. Lett. 81, 1157 (2002).
[Crossref]

Bjorklund, G. C.

Bloch, J. C.

Bozoki, Z.

A. Miklós, Z. Bozoki, Y. Jiang, and M. Feher, Appl. Phys. B 58, 483 (1994).
[Crossref]

Byer, R. L.

T. G. Spence, C. C. Harb, B. A. Paldus, R. N. Zare, B. Wilke, and R. L. Byer, Rev. Sci. Instrum. 71, 347 (2000).
[Crossref]

Cooper, D. E.

Eyler, E. E.

Feher, M.

A. Miklós, Z. Bozoki, Y. Jiang, and M. Feher, Appl. Phys. B 58, 483 (1994).
[Crossref]

Field, R. W.

Gallagher, T. F.

Gangopadhyay, S.

Hancock, G.

Harb, C. C.

T. G. Spence, C. C. Harb, B. A. Paldus, R. N. Zare, B. Wilke, and R. L. Byer, Rev. Sci. Instrum. 71, 347 (2000).
[Crossref]

Harran, F. J. M.

M. M. J. W. van Harpen, S. Li, S. E. Bisson, and F. J. M. Harran, Appl. Phys. Lett. 81, 1157 (2002).
[Crossref]

Hess, P.

Hsiang, W.-W.

Jiang, Y.

A. Miklós, Z. Bozoki, Y. Jiang, and M. Feher, Appl. Phys. B 58, 483 (1994).
[Crossref]

Kasyutich, V. L.

Kung, A. H.

X.-M. Qian, A. H. Kung, T. Zhang, K. C. Lau, and C. Y. Ng, Phys. Rev. Lett. 91, 233001 (2003).
[Crossref]

X.-M. Qian, T. Zhang, C. Y. Ng, A. H. Kung, and M. Ahmed, Rev. Sci. Instrum. 74, 2784 (2003).
[Crossref]

A. Miklós, C.-H. Lim, W.-W. Hsiang, G.-C. Liang, A. H. Kung, A. Schmohl, and P. Hess, Appl. Opt. 41, 2985 (2002).
[Crossref]

C.-S. Yu and A. H. Kung, J. Opt. Soc. Am. B 16, 2233 (1999).
[Crossref]

Lau, K. C.

X.-M. Qian, A. H. Kung, T. Zhang, K. C. Lau, and C. Y. Ng, Phys. Rev. Lett. 91, 233001 (2003).
[Crossref]

Lenth, W.

Li, S.

M. M. J. W. van Harpen, S. Li, S. E. Bisson, and F. J. M. Harran, Appl. Phys. Lett. 81, 1157 (2002).
[Crossref]

Liang, G.-C.

Lim, C.-H.

Melikechi, N.

Miklós, A.

Moses, E. I.

Ng, C. Y.

X.-M. Qian, A. H. Kung, T. Zhang, K. C. Lau, and C. Y. Ng, Phys. Rev. Lett. 91, 233001 (2003).
[Crossref]

X.-M. Qian, T. Zhang, C. Y. Ng, A. H. Kung, and M. Ahmed, Rev. Sci. Instrum. 74, 2784 (2003).
[Crossref]

Paldus, B. A.

T. G. Spence, C. C. Harb, B. A. Paldus, R. N. Zare, B. Wilke, and R. L. Byer, Rev. Sci. Instrum. 71, 347 (2000).
[Crossref]

Qian, X.-M.

X.-M. Qian, T. Zhang, C. Y. Ng, A. H. Kung, and M. Ahmed, Rev. Sci. Instrum. 74, 2784 (2003).
[Crossref]

X.-M. Qian, A. H. Kung, T. Zhang, K. C. Lau, and C. Y. Ng, Phys. Rev. Lett. 91, 233001 (2003).
[Crossref]

Ritchie, G. A. D.

Schmohl, A.

Sigrist, M. W.

M. W. Sigrist, Rev. Sci. Instrum. 74, 486 (2003).
[Crossref]

Silver, J. A.

Spence, T. G.

T. G. Spence, C. C. Harb, B. A. Paldus, R. N. Zare, B. Wilke, and R. L. Byer, Rev. Sci. Instrum. 71, 347 (2000).
[Crossref]

Tang, C. L.

van Harpen, M. M. J. W.

M. M. J. W. van Harpen, S. Li, S. E. Bisson, and F. J. M. Harran, Appl. Phys. Lett. 81, 1157 (2002).
[Crossref]

Wilke, B.

T. G. Spence, C. C. Harb, B. A. Paldus, R. N. Zare, B. Wilke, and R. L. Byer, Rev. Sci. Instrum. 71, 347 (2000).
[Crossref]

Yu, C.-S.

Zare, R. N.

T. G. Spence, C. C. Harb, B. A. Paldus, R. N. Zare, B. Wilke, and R. L. Byer, Rev. Sci. Instrum. 71, 347 (2000).
[Crossref]

Zhang, T.

X.-M. Qian, A. H. Kung, T. Zhang, K. C. Lau, and C. Y. Ng, Phys. Rev. Lett. 91, 233001 (2003).
[Crossref]

X.-M. Qian, T. Zhang, C. Y. Ng, A. H. Kung, and M. Ahmed, Rev. Sci. Instrum. 74, 2784 (2003).
[Crossref]

Appl. Opt. (2)

Appl. Phys. B (1)

A. Miklós, Z. Bozoki, Y. Jiang, and M. Feher, Appl. Phys. B 58, 483 (1994).
[Crossref]

Appl. Phys. Lett. (1)

M. M. J. W. van Harpen, S. Li, S. E. Bisson, and F. J. M. Harran, Appl. Phys. Lett. 81, 1157 (2002).
[Crossref]

J. Opt. Soc. Am. B (1)

Opt. Lett. (6)

Phys. Rev. Lett. (1)

X.-M. Qian, A. H. Kung, T. Zhang, K. C. Lau, and C. Y. Ng, Phys. Rev. Lett. 91, 233001 (2003).
[Crossref]

Rev. Sci. Instrum. (3)

T. G. Spence, C. C. Harb, B. A. Paldus, R. N. Zare, B. Wilke, and R. L. Byer, Rev. Sci. Instrum. 71, 347 (2000).
[Crossref]

X.-M. Qian, T. Zhang, C. Y. Ng, A. H. Kung, and M. Ahmed, Rev. Sci. Instrum. 74, 2784 (2003).
[Crossref]

M. W. Sigrist, Rev. Sci. Instrum. 74, 486 (2003).
[Crossref]

Other (2)

F. Scudieri and M. Bertolotti, eds., Photoacoustic and Photothermal Phenomena: 10th International Conference, AIP Conference Proceedings463 (American Institute of Physics, Woodbury, N.Y., 1998).

“The HITRAN Database,” (Harvard University, Cambridge, Mass., January22, 2004), http://cfa-www.harvard.edu/HITRAN/ .

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Schematic of the OPO, modulation scheme, and detection setup. The OPO cavity was embedded between a high reflector and the tuning mirror. The periodically poled lithium niobate (PPLN) crystal was held in a temperature-stabilized (±0.1 °C) oven. WM was achieved with a piezoelectric crystal (PZT) attached to the tuning mirror and driven by a sine-wave generator. The acoustic signal was detected by a microphone, amplified, rectified (AD637), and then processed by a phase-sensitive lock-in amplifier.

Fig. 2
Fig. 2

Photoacoustic spectrum obtained without wavelength modulation: solid curve, 1-ppmv methane in nitrogen; dashed curve, pure nitrogen. The main peak is due to methane. The smaller peaks are assigned to water vapor either from the methane mixture or residual in the cell. The vertical axis is given in a logarithmic scale to show the magnitude of the background.

Fig. 3
Fig. 3

Derivative spectrum obtained after demodulating the photoacoustic signal: solid curve, 1-ppmv methane in nitrogen; dotted line, pure nitrogen. The inset, with the vertical scale amplified 100 times, shows the magnitude of the pure nitrogen signal.

Fig. 4
Fig. 4

Comparison of methane line spectra obtained from this experiment (dotted curve), derivative of the spectrum given in Fig. 2 (dashed curve), and derivative of the methane line simulated from HITRAN (solid curve).

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

Uvopo,t=PAαvopo+B cosφb+AΔvαvopovcosωmt×exp-iωat+N,

Metrics