Abstract

A pulsed, modulation frequency tunable, frequency-doubled Nd:YAG laser has been devised for use in target detection through turbid media. A modulated pulse laser radar system offers many advantages in target detection, such as significant signal contrast enhancement, compared with conventional remote-sensing systems. By implementation of the dual-longitudinal-mode seed injection technique, the modulation frequency of the designed Q-switched laser can be tuned from 250 MHz up to 60 GHz in steps of 250 MHz while maintaining a modulation depth of at least 75%. This provides the ability to explore propagation and scattering properties further at previously unattainable high RF modulation frequencies.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. V. M. Contarino, P. R. Herczfeld, and L. J. Mullen, “Modulator LIDAR system,” U.S. patent5,822,047 (October13, 1998).
  2. R. Pellen, R. Olivard, Y. Guern, J. Cairou, and J. Lotrian, J. Phys. D 34, 1122 (2001).
    [CrossRef]
  3. L. J. Mullen, V. M. Contarino, and P. R. Herczfeld, IEEE Trans. Microwave Theory Tech. 44, 2703 (1996).
  4. T. D. Raymond and A. V. Smith, IEEE J. Quantum Electron. 31, 1734 (1995).
    [CrossRef]
  5. W. Koechner, Solid State Laser Engineering, 5th ed. (Springer-Verlag, New York, 1999), pp. 195–288.
    [CrossRef]
  6. A. E. Siegman and V. Evtuhov, Appl. Opt. 4, 142 (1965).
    [CrossRef]
  7. L. J. Mullen, E. Zege, I. Kotsev, and A. S. Prikhach, Proc. SPIE 4488, 25 (2002).
    [CrossRef]

2002 (1)

L. J. Mullen, E. Zege, I. Kotsev, and A. S. Prikhach, Proc. SPIE 4488, 25 (2002).
[CrossRef]

2001 (1)

R. Pellen, R. Olivard, Y. Guern, J. Cairou, and J. Lotrian, J. Phys. D 34, 1122 (2001).
[CrossRef]

1996 (1)

L. J. Mullen, V. M. Contarino, and P. R. Herczfeld, IEEE Trans. Microwave Theory Tech. 44, 2703 (1996).

1995 (1)

T. D. Raymond and A. V. Smith, IEEE J. Quantum Electron. 31, 1734 (1995).
[CrossRef]

1965 (1)

Cairou, J.

R. Pellen, R. Olivard, Y. Guern, J. Cairou, and J. Lotrian, J. Phys. D 34, 1122 (2001).
[CrossRef]

Contarino, V. M.

L. J. Mullen, V. M. Contarino, and P. R. Herczfeld, IEEE Trans. Microwave Theory Tech. 44, 2703 (1996).

V. M. Contarino, P. R. Herczfeld, and L. J. Mullen, “Modulator LIDAR system,” U.S. patent5,822,047 (October13, 1998).

Evtuhov, V.

Guern, Y.

R. Pellen, R. Olivard, Y. Guern, J. Cairou, and J. Lotrian, J. Phys. D 34, 1122 (2001).
[CrossRef]

Herczfeld, P. R.

L. J. Mullen, V. M. Contarino, and P. R. Herczfeld, IEEE Trans. Microwave Theory Tech. 44, 2703 (1996).

V. M. Contarino, P. R. Herczfeld, and L. J. Mullen, “Modulator LIDAR system,” U.S. patent5,822,047 (October13, 1998).

Koechner, W.

W. Koechner, Solid State Laser Engineering, 5th ed. (Springer-Verlag, New York, 1999), pp. 195–288.
[CrossRef]

Kotsev, I.

L. J. Mullen, E. Zege, I. Kotsev, and A. S. Prikhach, Proc. SPIE 4488, 25 (2002).
[CrossRef]

Lotrian, J.

R. Pellen, R. Olivard, Y. Guern, J. Cairou, and J. Lotrian, J. Phys. D 34, 1122 (2001).
[CrossRef]

Mullen, L. J.

L. J. Mullen, E. Zege, I. Kotsev, and A. S. Prikhach, Proc. SPIE 4488, 25 (2002).
[CrossRef]

L. J. Mullen, V. M. Contarino, and P. R. Herczfeld, IEEE Trans. Microwave Theory Tech. 44, 2703 (1996).

V. M. Contarino, P. R. Herczfeld, and L. J. Mullen, “Modulator LIDAR system,” U.S. patent5,822,047 (October13, 1998).

Olivard, R.

R. Pellen, R. Olivard, Y. Guern, J. Cairou, and J. Lotrian, J. Phys. D 34, 1122 (2001).
[CrossRef]

Pellen, R.

R. Pellen, R. Olivard, Y. Guern, J. Cairou, and J. Lotrian, J. Phys. D 34, 1122 (2001).
[CrossRef]

Prikhach, A. S.

L. J. Mullen, E. Zege, I. Kotsev, and A. S. Prikhach, Proc. SPIE 4488, 25 (2002).
[CrossRef]

Raymond, T. D.

T. D. Raymond and A. V. Smith, IEEE J. Quantum Electron. 31, 1734 (1995).
[CrossRef]

Siegman, A. E.

Smith, A. V.

T. D. Raymond and A. V. Smith, IEEE J. Quantum Electron. 31, 1734 (1995).
[CrossRef]

Zege, E.

L. J. Mullen, E. Zege, I. Kotsev, and A. S. Prikhach, Proc. SPIE 4488, 25 (2002).
[CrossRef]

Appl. Opt. (1)

IEEE J. Quantum Electron. (1)

T. D. Raymond and A. V. Smith, IEEE J. Quantum Electron. 31, 1734 (1995).
[CrossRef]

IEEE Trans. Microwave Theory Tech. (1)

L. J. Mullen, V. M. Contarino, and P. R. Herczfeld, IEEE Trans. Microwave Theory Tech. 44, 2703 (1996).

J. Phys. D (1)

R. Pellen, R. Olivard, Y. Guern, J. Cairou, and J. Lotrian, J. Phys. D 34, 1122 (2001).
[CrossRef]

Proc. SPIE (1)

L. J. Mullen, E. Zege, I. Kotsev, and A. S. Prikhach, Proc. SPIE 4488, 25 (2002).
[CrossRef]

Other (2)

V. M. Contarino, P. R. Herczfeld, and L. J. Mullen, “Modulator LIDAR system,” U.S. patent5,822,047 (October13, 1998).

W. Koechner, Solid State Laser Engineering, 5th ed. (Springer-Verlag, New York, 1999), pp. 195–288.
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Dual-longitudinal-mode modulated pulse system schematic. D, detector; A, aperture; Q, Q-switch; P, polarizer; BS2, beam splitter. Other abbreviations defined in text.

Fig. 2
Fig. 2

Full modulation 532-nm pulse at 250 MHz, captured by a high-speed photodetector.

Fig. 3
Fig. 3

(a) Beat note of two combined independent cw seed beams as seen on an electrical spectrum analyzer. (b) Resulting modulation frequency in the slave laser pulse as detected by a streak camera.

Fig. 4
Fig. 4

Additional modulation frequencies of (a) 10 GHz, (b) 20 GHz, and (c) 33 GHz achieved through dual-longitudinal-mode seed injection. The loss of uniformity is a function of increasing modulation frequency as a result of streak camera sensitivity at high streak speeds.

Metrics